Do you want to publish a course? Click here

No vortex in straight flows -- on the eigen-representations of velocity gradient

104   0   0.0 ( 0 )
 Added by Wennan Zou
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Velocity gradient is the basis of many vortex recognition methods, such as Q criterion, $Delta$ criterion, $lambda_{2}$ criterion, $lambda_{ci}$ criterion and $Omega$ criterion, etc.. Except the $lambda_{ci}$ criterion, all these criterions recognize vortices by designing various invariants, based on the Helmholtz decomposition that decomposes velocity gradient into strain rate and spin. In recent years, the intuition of no vortex in straight flows has promoted people to analyze the vortex state directly from the velocity gradient, in which vortex can be distinguished from the situation that the velocity gradient has couple complex eigenvalues. A specious viewpoint to adopt the simple shear as an independent flow mode was emphasized by many authors, among them, Kolar proposed the triple decomposition of motion by extracting a so-called effective pure shearing motion; Li et al. introduced the so-called quaternion decomposition of velocity gradient and proposed the concept of eigen rotation; Liu et al. further mined the characteristic information of velocity gradient and put forward an effective algorithm of Liutex, and then developed the vortex recognition method. However, there is another explanation for the increasingly clear representation of velocity gradient, that is the local streamline pattern based on critical-point theory. In this paper, the tensorial expressions of the right/left real Schur forms of velocity gradient are clarified from the characteristic problem of velocity gradient. The relations between the involved parameters are derived and numerically verified. Comparing with the geometrical features of local streamline pattern, we confirm that the parameters in the right eigen-representation based on the right real Schur form of velocity gradient have good meanings to reveal the local streamline pattern. Some illustrative examples from the DNS data are presented.



rate research

Read More

We present results for the equilibrium statistics and dynamic evolution of moderately large ($n = {mathcal{O}}(10^2 - 10^3)$) numbers of interacting point vortices on the unit sphere under the constraint of zero mean angular momentum. We consider a binary gas consisting of equal numbers of vortices with positive and negative circulations. When the circulations are chosen to be proportional to $1/sqrt{n}$, the energy probability distribution function, $p(E)$, converges rapidly with $n$ to a function that has a single maximum, corresponding to a maximum in entropy. Ensemble-averaged wavenumber spectra of the nonsingular velocity field induced by the vortices exhibit the expected $k^{-1}$ behavior at small scales for all energies. The spectra at the largest scales vary continuously with the inverse temperature $beta$ of the system and show a transition from positively sloped to negatively sloped as $beta$ becomes negative. The dynamics are ergodic and, regardless of the initial configuration of the vortices, statistical measures simply relax towards microcanonical ensemble measures at all observed energies. As such, the direction of any cascade process measured by the evolution of the kinetic energy spectrum depends only on the relative differences between the initial spectrum and the ensemble mean spectrum at that energy; not on the energy, or temperature, of the system.
We present velocity spectra measured in three cryogenic liquid 4He steady flows: grid and wake flows in a pressurized wind tunnel capable of achieving mean velocities up to 5 m/s at temperatures above and below the superfluid transition, down to 1.7 K, and a chunk turbulence flow at 1.55 K, capable of sustaining mean superfluid velocities up to 1.3 m/s. Depending on the flows, the stagnation pressure probes used for anemometry are resolving from one to two decades of the inertial regime of the turbulent cascade. We do not find any evidence that the second order statistics of turbulence below the superfluid transition differ from the ones of classical turbulence, above the transition.
138 - N. Weber , V. Galindo , J. Priede 2014
The Tayler instability is a kink-type flow instability which occurs when the electrical current through a conducting fluid exceeds a certain critical value. Originally studied in the astrophysical context, the instability was recently shown to be also a limiting factor for the upward scalability of liquid metal batteries. In this paper, we continue our efforts to simulate this instability for liquid metals within the framework of an integro-differential equation approach. The original solver is enhanced by multi-domain support with Dirichlet-Neumann partitioning for the static boundaries. Particular focus is laid on the detailed influence of the axial electrical boundary conditions on the characteristic features of the Tayler instability, and, secondly, on the occurrence of electro-vortex flows and their relevance for liquid metal batteries.
We use direct numerical simulations to calculate the joint probability density function of the relative distance $R$ and relative radial velocity component $V_R$ for a pair of heavy inertial particles suspended in homogeneous and isotropic turbulent flows. At small scales the distribution is scale invariant, with a scaling exponent that is related to the particle-particle correlation dimension in phase space, $D_2$. It was argued [1, 2] that the scale invariant part of the distribution has two asymptotic regimes: (1) $|V_R| ll R$ where the distribution depends solely on $R$; and (2) $|V_R| gg R$ where the distribution is a function of $|V_R|$ alone. The probability distributions in these two regimes are matched along a straight line $|V_R| = z^ast R$. Our simulations confirm that this is indeed correct. We further obtain $D_2$ and $z^ast$ as a function of the Stokes number, ${rm St}$. The former depends non-monotonically on ${rm St}$ with a minimum at about ${rm St} approx 0.7$ and the latter has only a weak dependence on ${rm St}$.
We explore the velocity fluctuations in a fluid due to a dilute suspension of randomly-distributed vortex rings at moderate Reynolds number, for instance those generated by a large colony of jellyfish. Unlike previous analysis of velocity fluctuations associated with gravitational sedimentation or suspensions of microswimmers, here the vortices have a finite lifetime and are constantly being produced. We find that the net velocity distribution is similar to that of a single vortex, except for the smallest velocities which involve contributions from many distant vortices; the result is a truncated $5/3$-stable distribution with variance (and mean energy) linear in the vortex volume fraction $phi$. The distribution has an inner core with a width scaling as $phi^{3/5}$, then long tails with power law $|u|^{-8/3}$, and finally a fixed cutoff (independent of $phi$) above which the probability density scales as $|u|^{-5}$, where $u$ is a component of the velocity. We argue that this distribution is robust in the sense that the distribution of any velocity fluctuations caused by random forces localized in space and time has the same properties, except possibly for a different scaling after the cutoff.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا