No Arabic abstract
Feature selection aims to select a subset of features to optimize the performances of downstream predictive tasks. Recently, multi-agent reinforced feature selection (MARFS) has been introduced to automate feature selection, by creating agents for each feature to select or deselect corresponding features. Although MARFS enjoys the automation of the selection process, MARFS suffers from not just the data complexity in terms of contents and dimensionality, but also the exponentially-increasing computational costs with regard to the number of agents. The raised concern leads to a new research question: Can we simplify the selection process of agents under reinforcement learning context so as to improve the efficiency and costs of feature selection? To address the question, we develop a single-agent reinforced feature selection approach integrated with restructured choice strategy. Specifically, the restructured choice strategy includes: 1) we exploit only one single agent to handle the selection task of multiple features, instead of using multiple agents. 2) we develop a scanning method to empower the single agent to make multiple selection/deselection decisions in each round of scanning. 3) we exploit the relevance to predictive labels of features to prioritize the scanning orders of the agent for multiple features. 4) we propose a convolutional auto-encoder algorithm, integrated with the encoded index information of features, to improve state representation. 5) we design a reward scheme that take into account both prediction accuracy and feature redundancy to facilitate the exploration process. Finally, we present extensive experimental results to demonstrate the efficiency and effectiveness of the proposed method.
Mutual information has been successfully adopted in filter feature-selection methods to assess both the relevancy of a subset of features in predicting the target variable and the redundancy with respect to other variables. However, existing algorithms are mostly heuristic and do not offer any guarantee on the proposed solution. In this paper, we provide novel theoretical results showing that conditional mutual information naturally arises when bounding the ideal regression/classification errors achieved by different subsets of features. Leveraging on these insights, we propose a novel stopping condition for backward and forward greedy methods which ensures that the ideal prediction error using the selected feature subset remains bounded by a user-specified threshold. We provide numerical simulations to support our theoretical claims and compare to common heuristic methods.
Feature selection is a widely used dimension reduction technique to select feature subsets because of its interpretability. Many methods have been proposed and achieved good results, in which the relationships between adjacent data points are mainly concerned. But the possible associations between data pairs that are may not adjacent are always neglected. Different from previous methods, we propose a novel and very simple approach for unsupervised feature selection, named MMFS (Multi-step Markov transition probability for Feature Selection). The idea is using multi-step Markov transition probability to describe the relation between any data pair. Two ways from the positive and negative viewpoints are employed respectively to keep the data structure after feature selection. From the positive viewpoint, the maximum transition probability that can be reached in a certain number of steps is used to describe the relation between two points. Then, the features which can keep the compact data structure are selected. From the viewpoint of negative, the minimum transition probability that can be reached in a certain number of steps is used to describe the relation between two points. On the contrary, the features that least maintain the loose data structure are selected. And the two ways can also be combined. Thus three algorithms are proposed. Our main contributions are a novel feature section approach which uses multi-step transition probability to characterize the data structure, and three algorithms proposed from the positive and negative aspects for keeping data structure. The performance of our approach is compared with the state-of-the-art methods on eight real-world data sets, and the experimental results show that the proposed MMFS is effective in unsupervised feature selection.
Feature selection is a core area of data mining with a recent innovation of graph-driven unsupervised feature selection for linked data. In this setting we have a dataset $mathbf{Y}$ consisting of $n$ instances each with $m$ features and a corresponding $n$ node graph (whose adjacency matrix is $mathbf{A}$) with an edge indicating that the two instances are similar. Existing efforts for unsupervised feature selection on attributed networks have explored either directly regenerating the links by solving for $f$ such that $f(mathbf{y}_i,mathbf{y}_j) approx mathbf{A}_{i,j}$ or finding community structure in $mathbf{A}$ and using the features in $mathbf{Y}$ to predict these communities. However, graph-driven unsupervised feature selection remains an understudied area with respect to exploring more complex guidance. Here we take the novel approach of first building a block model on the graph and then using the block model for feature selection. That is, we discover $mathbf{F}mathbf{M}mathbf{F}^T approx mathbf{A}$ and then find a subset of features $mathcal{S}$ that induces another graph to preserve both $mathbf{F}$ and $mathbf{M}$. We call our approach Block Model Guided Unsupervised Feature Selection (BMGUFS). Experimental results show that our method outperforms the state of the art on several real-world public datasets in finding high-quality features for clustering.
Genome-wide association studies (GWAS) have achieved great success in the genetic study of Alzheimers disease (AD). Collaborative imaging genetics studies across different research institutions show the effectiveness of detecting genetic risk factors. However, the high dimensionality of GWAS data poses significant challenges in detecting risk SNPs for AD. Selecting relevant features is crucial in predicting the response variable. In this study, we propose a novel Distributed Feature Selection Framework (DFSF) to conduct the large-scale imaging genetics studies across multiple institutions. To speed up the learning process, we propose a family of distributed group Lasso screening rules to identify irrelevant features and remove them from the optimization. Then we select the relevant group features by performing the group Lasso feature selection process in a sequence of parameters. Finally, we employ the stability selection to rank the top risk SNPs that might help detect the early stage of AD. To the best of our knowledge, this is the first distributed feature selection model integrated with group Lasso feature selection as well as detecting the risk genetic factors across multiple research institutions system. Empirical studies are conducted on 809 subjects with 5.9 million SNPs which are distributed across several individual institutions, demonstrating the efficiency and effectiveness of the proposed method.
We introduce supervised feature ranking and feature subset selection algorithms for multivariate time series (MTS) classification. Unlike most existing supervised/unsupervised feature selection algorithms for MTS our techniques do not require a feature extraction step to generate a one-dimensional feature vector from the time series. Instead it is based on directly computing similarity between individual time series and assessing how well the resulting cluster structure matches the labels. The techniques are amenable to heterogeneous MTS data, where the time series measurements may have different sampling resolutions, and to multi-modal data.