Do you want to publish a course? Click here

FakeRetouch: Evading DeepFakes Detection via the Guidance of Deliberate Noise

167   0   0.0 ( 0 )
 Added by Yihao Huang
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

The novelty and creativity of DeepFake generation techniques have attracted worldwide media attention. Many researchers focus on detecting fake images produced by these GAN-based image generation methods with fruitful results, indicating that the GAN-based image generation methods are not yet perfect. Many studies show that the upsampling procedure used in the decoder of GAN-based image generation methods inevitably introduce artifact patterns into fake images. In order to further improve the fidelity of DeepFake images, in this work, we propose a simple yet powerful framework to reduce the artifact patterns of fake images without hurting image quality. The method is based on an important observation that adding noise to a fake image can successfully reduce the artifact patterns in both spatial and frequency domains. Thus we use a combination of additive noise and deep image filtering to reconstruct the fake images, and we name our method FakeRetouch. The deep image filtering provides a specialized filter for each pixel in the noisy image, taking full advantages of deep learning. The deeply filtered images retain very high fidelity to their DeepFake counterparts. Moreover, we use the semantic information of the image to generate an adversarial guidance map to add noise intelligently. Our method aims at improving the fidelity of DeepFake images and exposing the problems of existing DeepFake detection methods, and we hope that the found vulnerabilities can help improve the future generation DeepFake detection methods.



rate research

Read More

At this moment, GAN-based image generation methods are still imperfect, whose upsampling design has limitations in leaving some certain artifact patterns in the synthesized image. Such artifact patterns can be easily exploited (by recent methods) for difference detection of real and GAN-synthesized images. However, the existing detection methods put much emphasis on the artifact patterns, which can become futile if such artifact patterns were reduced. Towards reducing the artifacts in the synthesized images, in this paper, we devise a simple yet powerful approach termed FakePolisher that performs shallow reconstruction of fake images through a learned linear dictionary, intending to effectively and efficiently reduce the artifacts introduced during image synthesis. The comprehensive evaluation on 3 state-of-the-art DeepFake detection methods and fake images generated by 16 popular GAN-based fake image generation techniques, demonstrates the effectiveness of our technique.Overall, through reducing artifact patterns, our technique significantly reduces the accuracy of the 3 state-of-the-art fake image detection methods, i.e., 47% on average and up to 93% in the worst case.
Recent advances in autoencoders and generative models have given rise to effective video forgery methods, used for generating so-called deepfakes. Mitigation research is mostly focused on post-factum deepfake detection and not on prevention. We complement these efforts by introducing a novel class of adversarial attacks---training-resistant attacks---which can disrupt face-swapping autoencoders whether or not its adversarial images have been included in the training set of said autoencoders. We propose the Oscillating GAN (OGAN) attack, a novel attack optimized to be training-resistant, which introduces spatial-temporal distortions to the output of face-swapping autoencoders. To implement OGAN, we construct a bilevel optimization problem, where we train a generator and a face-swapping model instance against each other. Specifically, we pair each input image with a target distortion, and feed them into a generator that produces an adversarial image. This image will exhibit the distortion when a face-swapping autoencoder is applied to it. We solve the optimization problem by training the generator and the face-swapping model simultaneously using an iterative process of alternating optimization. Next, we analyze the previously published Distorting Attack and show it is training-resistant, though it is outperformed by our suggested OGAN. Finally, we validate both attacks using a popular implementation of FaceSwap, and show that they transfer across different target models and target faces, including faces the adversarial attacks were not trained on. More broadly, these results demonstrate the existence of training-resistant adversarial attacks, potentially applicable to a wide range of domains.
Deep neural networks are vulnerable to adversarial examples, which can mislead classifiers by adding imperceptible perturbations. An intriguing property of adversarial examples is their good transferability, making black-box attacks feasible in real-world applications. Due to the threat of adversarial attacks, many methods have been proposed to improve the robustness. Several state-of-the-art defenses are shown to be robust against transferable adversarial examples. In this paper, we propose a translation-invariant attack method to generate more transferable adversarial examples against the defense models. By optimizing a perturbation over an ensemble of translated images, the generated adversarial example is less sensitive to the white-box model being attacked and has better transferability. To improve the efficiency of attacks, we further show that our method can be implemented by convolving the gradient at the untranslated image with a pre-defined kernel. Our method is generally applicable to any gradient-based attack method. Extensive experiments on the ImageNet dataset validate the effectiveness of the proposed method. Our best attack fools eight state-of-the-art defenses at an 82% success rate on average based only on the transferability, demonstrating the insecurity of the current defense techniques.
244 - Yisroel Mirsky , Wenke Lee 2020
Generative deep learning algorithms have progressed to a point where it is difficult to tell the difference between what is real and what is fake. In 2018, it was discovered how easy it is to use this technology for unethical and malicious applications, such as the spread of misinformation, impersonation of political leaders, and the defamation of innocent individuals. Since then, these `deepfakes have advanced significantly. In this paper, we explore the creation and detection of deepfakes and provide an in-depth view of how these architectures work. The purpose of this survey is to provide the reader with a deeper understanding of (1) how deepfakes are created and detected, (2) the current trends and advancements in this domain, (3) the shortcomings of the current defense solutions, and (4) the areas which require further research and attention.
108 - Yang He , Ning Yu , Margret Keuper 2021
The rapid advances in deep generative models over the past years have led to highly {realistic media, known as deepfakes,} that are commonly indistinguishable from real to human eyes. These advances make assessing the authenticity of visual data increasingly difficult and pose a misinformation threat to the trustworthiness of visual content in general. Although recent work has shown strong detection accuracy of such deepfakes, the success largely relies on identifying frequency artifacts in the generated images, which will not yield a sustainable detection approach as generative models continue evolving and closing the gap to real images. In order to overcome this issue, we propose a novel fake detection that is designed to re-synthesize testing images and extract visual cues for detection. The re-synthesis procedure is flexible, allowing us to incorporate a series of visual tasks - we adopt super-resolution, denoising and colorization as the re-synthesis. We demonstrate the improved effectiveness, cross-GAN generalization, and robustness against perturbations of our approach in a variety of detection scenarios involving multiple generators over CelebA-HQ, FFHQ, and LSUN datasets. Source code is available at https://github.com/SSAW14/BeyondtheSpectrum.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا