Do you want to publish a course? Click here

OGAN: Disrupting Deepfakes with an Adversarial Attack that Survives Training

99   0   0.0 ( 0 )
 Added by Eran Segalis
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Recent advances in autoencoders and generative models have given rise to effective video forgery methods, used for generating so-called deepfakes. Mitigation research is mostly focused on post-factum deepfake detection and not on prevention. We complement these efforts by introducing a novel class of adversarial attacks---training-resistant attacks---which can disrupt face-swapping autoencoders whether or not its adversarial images have been included in the training set of said autoencoders. We propose the Oscillating GAN (OGAN) attack, a novel attack optimized to be training-resistant, which introduces spatial-temporal distortions to the output of face-swapping autoencoders. To implement OGAN, we construct a bilevel optimization problem, where we train a generator and a face-swapping model instance against each other. Specifically, we pair each input image with a target distortion, and feed them into a generator that produces an adversarial image. This image will exhibit the distortion when a face-swapping autoencoder is applied to it. We solve the optimization problem by training the generator and the face-swapping model simultaneously using an iterative process of alternating optimization. Next, we analyze the previously published Distorting Attack and show it is training-resistant, though it is outperformed by our suggested OGAN. Finally, we validate both attacks using a popular implementation of FaceSwap, and show that they transfer across different target models and target faces, including faces the adversarial attacks were not trained on. More broadly, these results demonstrate the existence of training-resistant adversarial attacks, potentially applicable to a wide range of domains.



rate research

Read More

Standard adversarial attacks change the predicted class label of a selected image by adding specially tailored small perturbations to its pixels. In contrast, a universal perturbation is an update that can be added to any image in a broad class of images, while still changing the predicted class label. We study the efficient generation of universal adversarial perturbations, and also efficient methods for hardening networks to these attacks. We propose a simple optimization-based universal attack that reduces the top-1 accuracy of various network architectures on ImageNet to less than 20%, while learning the universal perturbation 13X faster than the standard method. To defend against these perturbations, we propose universal adversarial training, which models the problem of robust classifier generation as a two-player min-max game, and produces robust models with only 2X the cost of natural training. We also propose a simultaneous stochastic gradient method that is almost free of extra computation, which allows us to do universal adversarial training on ImageNet.
Deep neural networks have been shown to be susceptible to adversarial examples -- small, imperceptible changes constructed to cause mis-classification in otherwise highly accurate image classifiers. As a practical alternative, recent work proposed so-called adversarial patches: clearly visible, but adversarially crafted rectangular patches in images. These patches can easily be printed and applied in the physical world. While defenses against imperceptible adversarial examples have been studied extensively, robustness against adversarial patches is poorly understood. In this work, we first devise a practical approach to obtain adversarial patches while actively optimizing their location within the image. Then, we apply adversarial training on these location-optimized adversarial patches and demonstrate significantly improved robustness on CIFAR10 and GTSRB. Additionally, in contrast to adversarial training on imperceptible adversarial examples, our adversarial patch training does not reduce accuracy.
Human can easily recognize visual objects with lost information: even losing most details with only contour reserved, e.g. cartoon. However, in terms of visual perception of Deep Neural Networks (DNNs), the ability for recognizing abstract objects (visual objects with lost information) is still a challenge. In this work, we investigate this issue from an adversarial viewpoint: will the performance of DNNs decrease even for the images only losing a little information? Towards this end, we propose a novel adversarial attack, named textit{AdvDrop}, which crafts adversarial examples by dropping existing information of images. Previously, most adversarial attacks add extra disturbing information on clean images explicitly. Opposite to previous works, our proposed work explores the adversarial robustness of DNN models in a novel perspective by dropping imperceptible details to craft adversarial examples. We demonstrate the effectiveness of textit{AdvDrop} by extensive experiments, and show that this new type of adversarial examples is more difficult to be defended by current defense systems.
While deep neural networks have achieved remarkable success in various computer vision tasks, they often fail to generalize to new domains and subtle variations of input images. Several defenses have been proposed to improve the robustness against these variations. However, current defenses can only withstand the specific attack used in training, and the models often remain vulnerable to other input variations. Moreover, these methods often degrade performance of the model on clean images and do not generalize to out-of-domain samples. In this paper we present Generative Adversarial Training, an approach to simultaneously improve the models generalization to the test set and out-of-domain samples as well as its robustness to unseen adversarial attacks. Instead of altering a low-level pre-defined aspect of images, we generate a spectrum of low-level, mid-level and high-level changes using generative models with a disentangled latent space. Adversarial training with these examples enable the model to withstand a wide range of attacks by observing a variety of input alterations during training. We show that our approach not only improves performance of the model on clean images and out-of-domain samples but also makes it robust against unforeseen attacks and outperforms prior work. We validate effectiveness of our method by demonstrating results on various tasks such as classification, segmentation and object detection.
124 - Quanyu Liao , Xin Wang , Bin Kong 2020
Deep neural networks have been demonstrated to be vulnerable to adversarial attacks: subtle perturbations can completely change the classification results. Their vulnerability has led to a surge of research in this direction. However, most works dedicated to attacking anchor-based object detection models. In this work, we aim to present an effective and efficient algorithm to generate adversarial examples to attack anchor-free object models based on two approaches. First, we conduct category-wise instead of instance-wise attacks on the object detectors. Second, we leverage the high-level semantic information to generate the adversarial examples. Surprisingly, the generated adversarial examples it not only able to effectively attack the targeted anchor-free object detector but also to be transferred to attack other object detectors, even anchor-based detectors such as Faster R-CNN.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا