Do you want to publish a course? Click here

Fast oscillations, collisionless relaxation, and spurious evolution of supernova neutrino flavor

100   0   0.0 ( 0 )
 Added by Lucas Johns
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Mounting evidence indicates that neutrinos likely undergo fast flavor conversion (FFC) in at least some core-collapse supernovae. Outcomes of FFC, however, remain highly uncertain. Here we study the cascade of flavor-field power from large angular scales in momentum space down to small ones, showing that FFC enhances this process and thereby hastens relaxation. Cascade also poses a computational challenge, which is present even if the flavor field is stable: When power reaches the smallest angular scale of the calculation, error from truncating the angular-moment expansion propagates back to larger scales, to disastrous effect on the overall evolution. Essentially the same issue has prompted extensive work in the context of plasma kinetics. This link suggests new approaches to averting spurious evolution, a problem that presently puts severe limitations on the feasibility of realistic oscillation calculations.

rate research

Read More

We investigate the impact of the nonzero neutrino splitting and elastic neutrino-nucleon collisions on fast neutrino oscillations. Our calculations confirm that a small neutrino mass splitting and the neutrino mass hierarchy have very little effect on fast oscillation waves. We also demonstrate explicitly that fast oscillations remain largely unaffected for the time/distance scales that are much smaller than the neutrino mean free path but are damped on larger scales. This damping originates from both the direct modification of the dispersion relation of the oscillation waves in the neutrino medium and the flattening of the neutrino angular distributions over time. Our work suggests that fast neutrino oscillation waves produced near the neutrino sphere can propagate essentially unimpeded which may have ramifications in various aspects of the supernova physics.
Flavor-dependent neutrino emission is critical to the evolution of a supernova and its neutrino signal. In the dense anisotropic interior of the star, neutrino-neutrino forward-scattering can lead to fast collective neutrino oscillations, which has striking consequences. We present a theory of fast flavor depolarization, explaining how neutrino flavor differences become smaller, i.e., depolarize, due to diffusion to smaller angular scales. We show that transverse relaxation determines the epoch of this irreversible depolarization. We give a method to compute the depolarized fluxes, presenting an explicit formula for simple initial conditions, which can be a crucial input for supernova theory and neutrino phenomenology.
149 - Maxim Dvornikov 2019
We study neutrino flavor oscillations in a plane gravitational wave (GW) with circular polarization. For this purpose we use the solution of the Hamilton-Jacobi equation to get the contribution of GW to the effective Hamiltonian for the neutrino mass eigenstates. Then, considering stochastic GWs, we derive the equation for the density matrix for flavor neutrinos and analytically solve it in the two flavors approximation. The equation for the density matrix for the three neutrino flavors is also derived and solved numerically. In both cases of two and three neutrino flavors, we predict the ratios of fluxes of different flavors at a detector for cosmic neutrinos with relatively low energies owing to the interaction with such a GW background. The obtained results are compared with the recent observation of the flavor content of the astrophysical neutrino fluxes.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا