Do you want to publish a course? Click here

Fast Flavor Depolarization of Supernova Neutrinos

316   0   0.0 ( 0 )
 Added by Basudeb Dasgupta
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Flavor-dependent neutrino emission is critical to the evolution of a supernova and its neutrino signal. In the dense anisotropic interior of the star, neutrino-neutrino forward-scattering can lead to fast collective neutrino oscillations, which has striking consequences. We present a theory of fast flavor depolarization, explaining how neutrino flavor differences become smaller, i.e., depolarize, due to diffusion to smaller angular scales. We show that transverse relaxation determines the epoch of this irreversible depolarization. We give a method to compute the depolarized fluxes, presenting an explicit formula for simple initial conditions, which can be a crucial input for supernova theory and neutrino phenomenology.



rate research

Read More

We give a very brief overview of collective effects in neutrino oscillations in core collapse supernovae where refractive effects of neutrinos on themselves can considerably modify flavor oscillations, with possible repercussions for future supernova neutrino detection. We discuss synchronized and bipolar oscillations, the role of energy and angular neutrino modes, as well as three-flavor effects. We close with a short summary and some open questions.
64 - Lucas Johns 2021
A lingering mystery in core-collapse supernova theory is how collective neutrino oscillations affect the dynamics. All previously identified flavor instabilities, some of which might make the effects considerable, are essentially collisionless phenomena. Here it is shown that collisional instabilities exist as well. They are associated with asymmetries between the neutrino and antineutrino interaction rates, are possibly prevalent deep inside supernovae, and pose an unusual instance of decoherent interactions with a thermal environment causing the sustained growth of quantum coherence.
Mounting evidence indicates that neutrinos likely undergo fast flavor conversion (FFC) in at least some core-collapse supernovae. Outcomes of FFC, however, remain highly uncertain. Here we study the cascade of flavor-field power from large angular scales in momentum space down to small ones, showing that FFC enhances this process and thereby hastens relaxation. Cascade also poses a computational challenge, which is present even if the flavor field is stable: When power reaches the smallest angular scale of the calculation, error from truncating the angular-moment expansion propagates back to larger scales, to disastrous effect on the overall evolution. Essentially the same issue has prompted extensive work in the context of plasma kinetics. This link suggests new approaches to averting spurious evolution, a problem that presently puts severe limitations on the feasibility of realistic oscillation calculations.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا