Do you want to publish a course? Click here

Federated Learning with Nesterov Accelerated Gradient Momentum Method

113   0   0.0 ( 0 )
 Added by Zhengjie Yang
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Federated learning (FL) is a fast-developing technique that allows multiple workers to train a global model based on a distributed dataset. Conventional FL employs gradient descent algorithm, which may not be efficient enough. It is well known that Nesterov Accelerated Gradient (NAG) is more advantageous in centralized training environment, but it is not clear how to quantify the benefits of NAG in FL so far. In this work, we focus on a version of FL based on NAG (FedNAG) and provide a detailed convergence analysis. The result is compared with conventional FL based on gradient descent. One interesting conclusion is that as long as the learning step size is sufficiently small, FedNAG outperforms FedAvg. Extensive experiments based on real-world datasets are conducted, verifying our conclusions and confirming the better convergence performance of FedNAG.



rate research

Read More

In this paper, a Federated Learning (FL) simulation platform is introduced. The target scenario is Acoustic Model training based on this platform. To our knowledge, this is the first attempt to apply FL techniques to Speech Recognition tasks due to the inherent complexity. The proposed FL platform can support different tasks based on the adopted modular design. As part of the platform, a novel hierarchical optimization scheme and two gradient aggregation methods are proposed, leading to almost an order of magnitude improvement in training convergence speed compared to other distributed or FL training algorithms like BMUF and FedAvg. The hierarchical optimization offers additional flexibility in the training pipeline besides the enhanced convergence speed. On top of the hierarchical optimization, a dynamic gradient aggregation algorithm is proposed, based on a data-driven weight inference. This aggregation algorithm acts as a regularizer of the gradient quality. Finally, an unsupervised training pipeline tailored to FL is presented as a separate training scenario. The experimental validation of the proposed system is based on two tasks: first, the LibriSpeech task showing a speed-up of 7x and 6% Word Error Rate reduction (WERR) compared to the baseline results. The second task is based on session adaptation providing an improvement of 20% WERR over a competitive production-ready LAS model. The proposed Federated Learning system is shown to outperform the golden standard of distributed training in both convergence speed and overall model performance.
We consider the problem of decentralized deep learning where multiple agents collaborate to learn from a distributed dataset. While there exist several decentralized deep learning approaches, the majority consider a central parameter-server topology for aggregating the model parameters from the agents. However, such a topology may be inapplicable in networked systems such as ad-hoc mobile networks, field robotics, and power network systems where direct communication with the central parameter server may be inefficient. In this context, we propose and analyze a novel decentralized deep learning algorithm where the agents interact over a fixed communication topology (without a central server). Our algorithm is based on the heavy-ball acceleration method used in gradient-based optimization. We propose a novel consensus protocol where each agent shares with its neighbors its model parameters as well as gradient-momentum values during the optimization process. We consider both strongly convex and non-convex objective functions and theoretically analyze our algorithms performance. We present several empirical comparisons with competing decentralized learning methods to demonstrate the efficacy of our approach under different communication topologies.
Federated learning (FL) aims to train machine learning models in the decentralized system consisting of an enormous amount of smart edge devices. Federated averaging (FedAvg), the fundamental algorithm in FL settings, proposes on-device training and model aggregation to avoid the potential heavy communication costs and privacy concerns brought by transmitting raw data. However, through theoretical analysis we argue that 1) the multiple steps of local updating will result in gradient biases and 2) there is an inconsistency between the expected target distribution and the optimization objectives following the training paradigm in FedAvg. To tackle these problems, we first propose an unbiased gradient aggregation algorithm with the keep-trace gradient descent and the gradient evaluation strategy. Then we introduce an additional controllable meta updating procedure with a small set of data samples, indicating the expected target distribution, to provide a clear and consistent optimization objective. Both the two improvements are model- and task-agnostic and can be applied individually or together. Experimental results demonstrate that the proposed methods are faster in convergence and achieve higher accuracy with different network architectures in various FL settings.
Federated Averaging (FedAvg, also known as Local-SGD) (McMahan et al., 2017) is a classical federated learning algorithm in which clients run multiple local SGD steps before communicating their update to an orchestrating server. We propose a new federated learning algorithm, FedPAGE, able to further reduce the communication complexity by utilizing the recent optimal PAGE method (Li et al., 2021) instead of plain SGD in FedAvg. We show that FedPAGE uses much fewer communication rounds than previous local methods for both federated convex and nonconvex optimization. Concretely, 1) in the convex setting, the number of communication rounds of FedPAGE is $O(frac{N^{3/4}}{Sepsilon})$, improving the best-known result $O(frac{N}{Sepsilon})$ of SCAFFOLD (Karimireddy et al.,2020) by a factor of $N^{1/4}$, where $N$ is the total number of clients (usually is very large in federated learning), $S$ is the sampled subset of clients in each communication round, and $epsilon$ is the target error; 2) in the nonconvex setting, the number of communication rounds of FedPAGE is $O(frac{sqrt{N}+S}{Sepsilon^2})$, improving the best-known result $O(frac{N^{2/3}}{S^{2/3}epsilon^2})$ of SCAFFOLD (Karimireddy et al.,2020) by a factor of $N^{1/6}S^{1/3}$, if the sampled clients $Sleq sqrt{N}$. Note that in both settings, the communication cost for each round is the same for both FedPAGE and SCAFFOLD. As a result, FedPAGE achieves new state-of-the-art results in terms of communication complexity for both federated convex and nonconvex optimization.
While federated learning traditionally aims to train a single global model across decentralized local datasets, one model may not always be ideal for all participating clients. Here we propose an alternative, where each client only federates with other relevant clients to obtain a stronger model per client-specific objectives. To achieve this personalization, rather than computing a single model average with constant weights for the entire federation as in traditional FL, we efficiently calculate optimal weighted model combinations for each client, based on figuring out how much a client can benefit from anothers model. We do not assume knowledge of any underlying data distributions or client similarities, and allow each client to optimize for arbitrary target distributions of interest, enabling greater flexibility for personalization. We evaluate and characterize our method on a variety of federated settings, datasets, and degrees of local data heterogeneity. Our method outperforms existing alternatives, while also enabling new features for personalized FL such as transfer outside of local data distributions.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا