Do you want to publish a course? Click here

Federated Transfer Learning with Dynamic Gradient Aggregation

99   0   0.0 ( 0 )
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

In this paper, a Federated Learning (FL) simulation platform is introduced. The target scenario is Acoustic Model training based on this platform. To our knowledge, this is the first attempt to apply FL techniques to Speech Recognition tasks due to the inherent complexity. The proposed FL platform can support different tasks based on the adopted modular design. As part of the platform, a novel hierarchical optimization scheme and two gradient aggregation methods are proposed, leading to almost an order of magnitude improvement in training convergence speed compared to other distributed or FL training algorithms like BMUF and FedAvg. The hierarchical optimization offers additional flexibility in the training pipeline besides the enhanced convergence speed. On top of the hierarchical optimization, a dynamic gradient aggregation algorithm is proposed, based on a data-driven weight inference. This aggregation algorithm acts as a regularizer of the gradient quality. Finally, an unsupervised training pipeline tailored to FL is presented as a separate training scenario. The experimental validation of the proposed system is based on two tasks: first, the LibriSpeech task showing a speed-up of 7x and 6% Word Error Rate reduction (WERR) compared to the baseline results. The second task is based on session adaptation providing an improvement of 20% WERR over a competitive production-ready LAS model. The proposed Federated Learning system is shown to outperform the golden standard of distributed training in both convergence speed and overall model performance.



rate research

Read More

Federated learning (FL) aims to train machine learning models in the decentralized system consisting of an enormous amount of smart edge devices. Federated averaging (FedAvg), the fundamental algorithm in FL settings, proposes on-device training and model aggregation to avoid the potential heavy communication costs and privacy concerns brought by transmitting raw data. However, through theoretical analysis we argue that 1) the multiple steps of local updating will result in gradient biases and 2) there is an inconsistency between the expected target distribution and the optimization objectives following the training paradigm in FedAvg. To tackle these problems, we first propose an unbiased gradient aggregation algorithm with the keep-trace gradient descent and the gradient evaluation strategy. Then we introduce an additional controllable meta updating procedure with a small set of data samples, indicating the expected target distribution, to provide a clear and consistent optimization objective. Both the two improvements are model- and task-agnostic and can be applied individually or together. Experimental results demonstrate that the proposed methods are faster in convergence and achieve higher accuracy with different network architectures in various FL settings.
In this paper, a new learning algorithm for Federated Learning (FL) is introduced. The proposed scheme is based on a weighted gradient aggregation using two-step optimization to offer a flexible training pipeline. Herein, two different flavors of the aggregation method are presented, leading to an order of magnitude improvement in convergence speed compared to other distributed or FL training algorithms like BMUF and FedAvg. Further, the aggregation algorithm acts as a regularizer of the gradient quality. We investigate the effect of our FL algorithm in supervised and unsupervised Speech Recognition (SR) scenarios. The experimental validation is performed based on three tasks: first, the LibriSpeech task showing a speed-up of 7x and 6% word error rate reduction (WERR) compared to the baseline results. The second task is based on session adaptation providing 20% WERR over a powerful LAS model. Finally, our unsupervised pipeline is applied to the conversational SR task. The proposed FL system outperforms the baseline systems in both convergence speed and overall model performance.
Federated learning (FL) is a fast-developing technique that allows multiple workers to train a global model based on a distributed dataset. Conventional FL employs gradient descent algorithm, which may not be efficient enough. It is well known that Nesterov Accelerated Gradient (NAG) is more advantageous in centralized training environment, but it is not clear how to quantify the benefits of NAG in FL so far. In this work, we focus on a version of FL based on NAG (FedNAG) and provide a detailed convergence analysis. The result is compared with conventional FL based on gradient descent. One interesting conclusion is that as long as the learning step size is sufficiently small, FedNAG outperforms FedAvg. Extensive experiments based on real-world datasets are conducted, verifying our conclusions and confirming the better convergence performance of FedNAG.
99 - Ye Xue , Diego Klabjan , Yuan Luo 2021
Federated learning is a distributed machine learning paradigm where multiple data owners (clients) collaboratively train one machine learning model while keeping data on their own devices. The heterogeneity of client datasets is one of the most important challenges of federated learning algorithms. Studies have found performance reduction with standard federated algorithms, such as FedAvg, on non-IID data. Many existing works on handling non-IID data adopt the same aggregation framework as FedAvg and focus on improving model updates either on the server side or on clients. In this work, we tackle this challenge in a different view by introducing redistribution rounds that delay the aggregation. We perform experiments on multiple tasks and show that the proposed framework significantly improves the performance on non-IID data.
Federated Learning (FL) is a newly emerged decentralized machine learning (ML) framework that combines on-device local training with server-based model synchronization to train a centralized ML model over distributed nodes. In this paper, we propose an asynchronous FL framework with periodic aggregation to eliminate the straggler issue in FL systems. For the proposed model, we investigate several device scheduling and update aggregation policies and compare their performances when the devices have heterogeneous computation capabilities and training data distributions. From the simulation results, we conclude that the scheduling and aggregation design for asynchronous FL can be rather different from the synchronous case. For example, a norm-based significance-aware scheduling policy might not be efficient in an asynchronous FL setting, and an appropriate age-aware weighting design for the model aggregation can greatly improve the learning performance of such systems.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا