No Arabic abstract
In this paper, we describe a novel iterative procedure called SISTA to learn the underlying cost in optimal transport problems. SISTA is a hybrid between two classical methods, coordinate descent (S-inkhorn) and proximal gradient descent (ISTA). It alternates between a phase of exact minimization over the transport potentials and a phase of proximal gradient descent over the parameters of the transport cost. We prove that this method converges linearly, and we illustrate on simulated examples that it is significantly faster than both coordinate descent and ISTA. We apply it to estimating a model of migration, which predicts the flow of migrants using country-specific characteristics and pairwise measures of dissimilarity between countries. This application demonstrates the effectiveness of machine learning in quantitative social sciences.
In this paper, we estimate the high dimensional precision matrix under the weak sparsity condition where many entries are nearly zero. We study a Lasso-type method for high dimensional precision matrix estimation and derive general error bounds under the weak sparsity condition. The common irrepresentable condition is relaxed and the results are applicable to the weak sparse matrix. As applications, we study the precision matrix estimation for the heavy-tailed data, the non-paranormal data, and the matrix data with the Lasso-type method.
In this paper we consider the reconstruction problem of photoacoustic tomography (PAT) with a flat observation surface. We develop a direct reconstruction method that employs regularization with wavelet sparsity constraints. To that end, we derive a wavelet-vaguelette decomposition (WVD) for the PAT forward operator and a corresponding explicit reconstruction formula in the case of exact data. In the case of noisy data, we combine the WVD reconstruction formula with soft-thresholding which yields a spatially adaptive estimation method. We demonstrate that our method is statistically optimal for white random noise if the unknown function is assumed to lie in any Besov-ball. We present generalizations of this approach and, in particular, we discuss the combination of vaguelette soft-thresholding with a TV prior. We also provide an efficient implementation of the vaguelette transform that leads to fast image reconstruction algorithms supported by numerical results.
We solve non-Markovian optimal switching problems in discrete time on an infinite horizon, when the decision maker is risk aware and the filtration is general, and establish existence and uniqueness of solutions for the associated reflected backward stochastic difference equations. An example application to hydropower planning is provided.
We analyze the optimal dividend payment problem in the dual model under constant transaction costs. We show, for a general spectrally positive L{e}vy process, an optimal strategy is given by a $(c_1,c_2)$-policy that brings the surplus process down to $c_1$ whenever it reaches or exceeds $c_2$ for some $0 leq c_1 < c_2$. The value function is succinctly expressed in terms of the scale function. A series of numerical examples are provided to confirm the analytical results and to demonstrate the convergence to the no-transaction cost case, which was recently solved by Bayraktar et al. (2013).
We investigate the problem of optimal transport in the so-called Kantorovich form, i.e. given two Radon measures on two compact sets, we seek an optimal transport plan which is another Radon measure on the product of the sets that has these two measures as marginals and minimizes a certain cost function. We consider quadratic regularization of the problem, which forces the optimal transport plan to be a square integrable function rather than a Radon measure. We derive the dual problem and show strong duality and existence of primal and dual solutions to the regularized problem. Then we derive two algorithms to solve the dual problem of the regularized problem: A Gauss-Seidel method and a semismooth quasi-Newton method and investigate both methods numerically. Our experiments show that the methods perform well even for small regularization parameters. Quadratic regularization is of interest since the resulting optimal transport plans are sparse, i.e. they have a small support (which is not the case for the often used entropic regularization where the optimal transport plan always has full measure).