No Arabic abstract
We study the time-fluctuating magnetic gradient noise mechanisms in pairs of Si/SiGe quantum dots using exchange echo noise spectroscopy. We find through a combination of spectral inversion and correspondence to theoretical modeling that quadrupolar precession of the $^{73}$Ge nuclei play a key role in the spin-echo decay time $T_2$, with a characteristic dependence on magnetic field and the width of the Si quantum well. The $^{73}$Ge noise peaks appear at the fundamental and first harmonic of the $^{73}$Ge Larmor resonance, superimposed over $1/f$ noise due to $^{29}$Si dipole-dipole dynamics, and are dependent on material epitaxy and applied magnetic field. These results may inform the needs of dynamical decoupling when using Si/SiGe quantum dots as qubits in quantum information processing devices.
Spin-based silicon quantum dots are an attractive qubit technology for quantum information processing with respect to coherence time, control, and engineering. Here we present an exchange-only Si qubit device platform that combines the throughput of CMOS-like wafer processing with the versatility of direct-write lithography. The technology, which we coin SLEDGE, features dot-shaped gates that are patterned simultaneously on one topographical plane and subsequently connected by vias to interconnect metal lines. The process design enables non-trivial layouts as well as flexibility in gate dimensions, material selection, and additional device features such as for rf qubit control. We show that the SLEDGE process has reduced electrostatic disorder with respect to traditional overlapping gate devices with lift-off metallization, and we present spin coherent exchange oscillations and single qubit blind randomized benchmarking data.
Fast operations, an easily tunable Hamiltonian, and a straightforward two-qubit interaction make charge qubits a useful tool for benchmarking device performance and exploring two-qubit dynamics. Here, we tune a linear chain of four Si/SiGe quantum dots to host two double dot charge qubits. Using the capacitance between the double dots to mediate a strong two-qubit interaction, we simultaneously drive coherent transitions to generate correlations between the qubits. We then sequentially pulse the qubits to drive one qubit conditionally on the state of the other. We find that a conditional $pi$-rotation can be driven in just 74 ps with a modest fidelity demonstrating the possibility of two-qubit operations with a 13.5 GHz clockspeed.
We implement a technique for measuring the singlet-triplet energy splitting responsible for spin-to-charge conversion in semiconductor quantum dots. This method, which requires fast, single-shot charge measurement, reliably extracts an energy in the limits of both large and small splittings. We perform this technique on an undoped, accumulation-mode Si/SiGe triple-quantum dot and find that the measured splitting varies smoothly as a function of confinement gate biases. Not only does this demonstration prove the value of having an $in~situ$ excited-state measurement technique as part of a standard tune-up procedure, it also suggests that in typical Si/SiGe quantum dot devices, spin-blockade can be limited by lateral orbital excitation energy rather than valley splitting.
We report the first complete characterization of single-qubit and two-qubit gate fidelities in silicon-based spin qubits, including cross-talk and error correlations between the two qubits. To do so, we use a combination of standard randomized benchmarking and a recently introduced method called character randomized benchmarking, which allows for more reliable estimates of the two-qubit fidelity in this system. Interestingly, with character randomized benchmarking, the two-qubit CPhase gate fidelity can be obtained by studying the additional decay induced by interleaving the CPhase gate in a reference sequence of single-qubit gates only. This work sets the stage for further improvements in all the relevant gate fidelities in silicon spin qubits beyond the error threshold for fault-tolerant quantum computation.
Quantum computation requires qubits that satisfy often-conflicting criteria, including scalable control and long-lasting coherence. One approach to creating a suitable qubit is to operate in an encoded subspace of several physical qubits. Though such encoded qubits may be particularly susceptible to leakage out of their computational subspace, they can be insensitive to certain noise processes and can also allow logical control with a single type of entangling interaction while maintaining favorable features of the underlying physical system. Here we demonstrate a qubit encoded in a subsystem of three coupled electron spins confined in gated, isotopically enhanced silicon quantum dots. Using a modified blind randomized benchmarking protocol that determines both computational and leakage errors, we show that unitary operations have an average total error of 0.35%, with 0.17% of that coming from leakage driven by interactions with substrate nuclear spins. This demonstration utilizes only the voltage-controlled exchange interaction for qubit manipulation and highlights the operational benefits of encoded subsystems, heralding the realization of high-quality encoded multi-qubit operations.