Do you want to publish a course? Click here

Generic spectrum of the weighted Laplacian operator on Cayley graphs

196   0   0.0 ( 0 )
 Added by Lucas R. de Lima
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper we address the problem of determining whether the eigenspaces of a class of weighted Laplacians on Cayley graphs are generically irreducible or not. This work is divided into two parts. In the first part, we express the weighted Laplacian on Cayley graphs as the divergence of a gradient in an analogous way to the approach adopted in Riemannian geometry. In the second part, we analyze its spectrum on left-invariant Cayley graphs endowed with an invariant metric in both directed and undirected cases. We give some criteria for a given eigenspace being generically irreducible. Finally, we introduce an additional operator which is comparable to the Laplacian, and we verify that the same criteria hold.



rate research

Read More

This paper is devoted to semiclassical estimates of the eigenvalues of the Pauli operator on a bounded open set whose boundary carries Dirichlet conditions. Assuming that the magnetic field is positive and a few generic conditions, we establish the simplicity of the eigenvalues and provide accurate asymptotic estimates involving Segal-Bargmann and Hardy spaces associated with the magnetic field.
237 - Bobo Hua , Lili Wang 2018
In this paper, we study eigenvalues and eigenfunctions of $p$-Laplacians with Dirichlet boundary condition on graphs. We characterize the first eigenfunction (and the maximum eigenfunction for a bipartite graph) via the sign condition. By the uniqueness of the first eigenfunction of $p$-Laplacian, as $pto 1,$ we identify the Cheeger constant of a symmetric graph with that of the quotient graph. By this approach, we calculate various Cheeger constants of spherically symmetric graphs.
The spectrum of the non-self-adjoint Zakharov-Shabat operator with periodic potentials is studied, and its explicit dependence on the presence of a semiclassical parameter in the problem is also considered. Several new results are obtained. In particular: (i) it is proved that the resolvent set has two connected components, (ii) new bounds on the location of the Floquet and Dirichlet spectra are obtained, some of which depend explicitly on the value of the semiclassical parameter, (iii) it is proved that the spectrum localizes to a cross in the spectral plane in the semiclassical limit. The results are illustrated by discussing several examples in which the spectrum is computed analytically or numerically.
160 - S. Kupin 2008
We give sufficient conditions for the presence of the absolutely continuous spectrum of a Schrodinger operator on a regular rooted tree without loops (also called regular Bethe lattice or Cayley tree).
For any multi-graph $G$ with edge weights and vertex potential, and its universal covering tree $mathcal{T}$, we completely characterize the point spectrum of operators $A_{mathcal{T}}$ on $mathcal{T}$ arising as pull-backs of local, self-adjoint operators $A_{G}$ on $G$. This builds on work of Aomoto, and includes an alternative proof of the necessary condition for point spectrum he derived in (Aomoto, 1991). Our result gives a finite time algorithm to compute the point spectrum of $A_{mathcal{T}}$ from the graph $G$, and additionally allows us to show that this point spectrum is contained in the spectrum of $A_{G}$. Finally, we prove that typical pull-back operators have a spectral delocalization property: the set of edge weight and vertex potential parameters of $A_{G}$ giving rise to $A_{mathcal{T}}$ with purely absolutely continuous spectrum is open and its complement has large codimension.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا