No Arabic abstract
We consider a class of reinforcement processes, called WARMs, on tree graphs. These processes involve a parameter $alpha$ which governs the strength of the reinforcement, and a collection of Poisson processes indexed by the vertices of the graph. It has recently been proved that for any fixed bounded degree graph with Poisson firing rates that are uniformly bounded above, in the very strong reinforcement regime ($alphagg 1$ sufficiently large depending on the maximal degree), the set of edges that survive (i.e. that are reinforced infinitely often by the process) has only finite connected components. The present paper is devoted to the construction of an example in the opposite direction, that is, with the set of surviving edges having infinite connected components. Namely, we show that for each fixed $alpha>1$ one can find a regular rooted tree and firing rates that are uniformly bounded from above, for which there are infinite components almost surely. Joining such examples, we find a graph (with unbounded degrees) on which for any $alpha>1$ almost surely there are infinite connected components of surviving edges.
We study level-set percolation of the Gaussian free field on the infinite $d$-regular tree for fixed $dgeq 3$. Denoting by $h_star$ the critical value, we obtain the following results: for $h>h_star$ we derive estimates on conditional exponential moments of the size of a fixed connected component of the level set above level $h$; for $h<h_star$ we prove that the number of vertices connected over distance $k$ above level $h$ to a fixed vertex grows exponentially in $k$ with positive probability. Furthermore, we show that the percolation probability is a continuous function of the level $h$, at least away from the critical value $h_star$. Along the way we also obtain matching upper and lower bounds on the eigenfunctions involved in the spectral characterisation of the critical value $h_star$ and link the probability of a non-vanishing limit of the martingale used therein to the percolation probability. A number of the results derived here are applied in the accompanying paper [AC2].
In invasion percolation, the edges of successively maximal weight (the outlets) divide the invasion cluster into a chain of ponds separated by outlets. On the regular tree, the ponds are shown to grow exponentially, with law of large numbers, central limit theorem and large deviation results. The tail asymptotics for a fixed pond are also studied and are shown to be related to the asymptotics of a critical percolation cluster, with a logarithmic correction.
In this paper we consider the geodesic tree in exponential last passage percolation. We show that for a large class of initial conditions around the origin, the line-to-point geodesic that terminates in a cylinder of width $o(N^{2/3})$ and length $o(N)$ agrees in the cylinder, with the stationary geodesic sharing the same end point. In the case of the point-to-point model, we consider width $delta N^{2/3}$ and length up to $delta^{3/2} N/(log(delta^{-1}))^3$ and provide lower and upper bound for the probability that the geodesics agree in that cylinder.
We consider the zero-average Gaussian free field on a certain class of finite $d$-regular graphs for fixed $dgeq 3$. This class includes $d$-regular expanders of large girth and typical realisations of random $d$-regular graphs. We show that the level set of the zero-average Gaussian free field above level $h$ exhibits a phase transition at level $h_star$, which agrees with the critical value for level-set percolation of the Gaussian free field on the infinite $d$-regular tree. More precisely, we show that, with probability tending to one as the size of the finite graphs tends to infinity, the level set above level $h$ does not contain any connected component of larger than logarithmic size whenever $h>h_star$, and on the contrary, whenever $h<h_star$, a linear fraction of the vertices is contained in connected components of the level set above level $h$ having a size of at least a small fractional power of the total size of the graph. It remains open whether in the supercritical phase $h<h_star$, as the size of the graphs tends to infinity, one observes the emergence of a (potentially unique) giant connected component of the level set above level $h$. The proofs in this article make use of results from the accompanying paper [AC1].
Large deviations in the context of first-passage percolation was first studied in the early 1980s by Grimmett and Kesten, and has since been revisited in a variety of studies. However, none of these studies provides a precise relation between the existence of moments of polynomial order and the decay of probability tails. Such a relation is derived in this paper, and is used to strengthen the conclusion of the shape theorem. In contrast to its one-dimensional counterpart - the Hsu-Robbins-ErdH{o}s strong law - this strengthening is obtained without imposing a higher-order moment condition.