Do you want to publish a course? Click here

Doppler shift oscillations of a sunspot detected by CYRA and IRIS

187   0   0.0 ( 0 )
 Added by Dong Li Dr.
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Context. The carbon monoxide (CO) molecular line at around 46655 A in solar infrared spectra is often used to investigate the dynamic behavior of the cold heart of the solar atmosphere, i.e., sunspot oscillation, especially at the sunspot umbra. Aims. We investigated sunspot oscillation at Doppler velocities of the CO 7-6 R67 and 3-2 R14 lines that were measured by the Cryogenic Infrared Spectrograph (CYRA), as well as the line profile of Mg II k line that was detected by the Interface Region Imaging Spectrograph (IRIS). Methods. A single Gaussian function is applied to each CO line profile to extract the line shift, while the moment analysis method is used for the Mg II k line. Then the sunspot oscillation can be found in the time-distance image of Doppler velocities, and the quasi-periodicity at the sunspot umbra are determined from the wavelet power spectrum. Finally, the cross-correlation method is used to analyze the phase relation between different atmospheric levels. Results. At the sunspot umbra, a periodicity of roughly 5 min is detected at the Doppler velocity range of the CO 7-6 R67 line that formed in the photosphere, while a periodicity of around 3 min is discovered at the Doppler velocities of CO 3-2 R14 and Mg II k lines that formed in the upper photosphere or the temperature minimum region and the chromosphere. A time delay of about 2 min is measured between the strong CO 3-2 R14 line and the Mg II k line. Conclusions. Based on the spectroscopic observations from the CYRA and IRIS, the 3 min sunspot oscillation can be spatially resolved in the Doppler shifts. It may come from the upper photosphere or the temperature minimum region and then propagate to the chromosphere, which might be regarded as a propagating slow magnetoacoustic wave.



rate research

Read More

Low-amplitude Doppler-shift oscillations have been observed in coronal emission lines in a number of active regions with the EUV Imaging Spectrometer (EIS) on the Hinode satellite. Both standing and propagating waves have been detected and many periods have been observed, but a clear picture of all the wave modes that might be associated with active regions has not yet emerged. In this study, we examine additional observations obtained with EIS in plage near an active region on 2007 August 22--23. We find Doppler-shift oscillations with amplitudes between 1 and 2 km/s in emission lines ranging from Fe XI 188.23 Angstroms, which is formed at log T = 6.07 to Fe XV 284.16 Angstroms, which is formed at log T = 6.32. Typical periods are near 10 minutes. We also observe intensity and density oscillations for some of the detected Doppler-shift oscillations. In the better-observed cases, the oscillations are consistent with upwardly propagating slow magnetoacoustic waves. Simultaneous observations of the Ca II H line with the Hinode Solar Optical Telescope Broadband Filter Imager show some evidence for 10-minute oscillations as well.
88 - Y. Zhugzhda , R. Sych 2018
Data analysis of sunspot oscillation based on 6-hr SDO run of observation showed that low frequency (0.2 < ! < 1 mHz) oscillations are local similar to three and five minute oscillations. The oscillations in the sunspot are concentrated in cells of a few arcsec, each of which has its own oscillation spectrum. The analysis of two scenario for sunspot oscillations leads to conclusion that local sunspot oscillations occur due to subphotospheric resonator for slow mhd waves. Empirical models of sunspot atmosphere and the theory of slow waves in thin magnetic flux tubes is applied to the modeling of subphotospheric resonator. Spectrum of local oscillations consists of a great number of lines. This kind of spectrum can occur only if the subphospheric resonator is a magnetic tube with a rather weak magnetic field.Magnetic tubes of this sort are umbral dots that appear due to the convective tongues in the monolithic sunspots. The interrelation of local oscillations with umbral dots and wave fronts of traveling waves in sunspots is discussed.
Optical and near-UV continuum emissions in flares contribute substantially to flare energy budget. Two mechanisms play an important role for continuum emission in flares: hydrogen recombination after sudden ionization at chromospheric layers and transportation of the energy radiatively from the chromosphere to lower layers in the atmosphere, the so called back-warming. The aim of the paper is to disentangle between these two mechanisms for the excess of Balmer continuum observed in a flare. Methods. We combine the observations of Balmer continuum obtained with IRIS (spectra and SJIs 2832 A) and hard X-ray (HXR) emission detected by FERMI Gamma Burst Monitor (GBM) during a mini flare. Calibrated Balmer continuum is compared to non-LTE radiative transfer flare models and radiated energy is estimated. Assuming thick target HXR emission, we calculate the energy of non-thermal electrons detected by FERMI GBM and compare it to the radiated energy. The favorable argument of a relationship between the Balmer continuum excess and the HXR emission is that there is a good time coincidence between both of them. In addition, the shape of the maximum brightness in the 2832 SJIs, which is mainly due to this Balmer continuum excess, is similar to the FERMI/GBM light curve. The electron-beam flux estimated from FERMI/GBM is consistent with the beam flux required in non-LTE radiative transfer models to get the excess of Balmer continuum emission observed in the IRIS spectra. The low energy input by non thermal electrons above 20 keV is sufficient to produce the enhancement of Balmer continuum emission. This could be explained by the topology of the reconnection site. The reconnection starts in a tiny bald patch region which is transformed dynamically in a X-point current sheet. The size of the interacting region would be under the spatial resolution of the instrument.
178 - Feng Wang , Hui Deng , Bo Li 2018
We use high spatial and temporal resolution observations, simultaneously obtained with the New Vacuum Solar Telescope and Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory, to investigate the high-frequency oscillations above a sunspot umbra. A novel time--frequency analysis method, namely the synchrosqueezing transform (SST), is employed to represent their power spectra and to reconstruct the high-frequency signals at different solar atmospheric layers. A validation study with synthetic signals demonstrates that SST is capable to resolving weak signals even when their strength is comparable with the high-frequency noise. The power spectra, obtained from both SST and the Fourier transform, of the entire umbral region indicate that there are significant enhancements between 10 and 14 mHz (labeled as 12 mHz) at different atmospheric layers. Analyzing the spectrum of a photospheric region far away from the umbra demonstrates that this 12~mHz component exists only inside the umbra. The animation based on the reconstructed 12 mHz component in AIA 171 AA illustrates that an intermittently propagating wave first emerges near the footpoints of coronal fan structures, and then propagates outward along the structures. A time--distance diagram, coupled with a subsonic wave speed ($sim$ 49 km s$^{-1}$), highlights the fact that these coronal perturbations are best described as upwardly propagating magnetoacoustic slow waves. Thus, we first reveal the high-frequency oscillations with a period around one minute in imaging observations at different height above an umbra, and these oscillations seem to be related to the umbral perturbations in the photosphere.
Spatially averaged (> 50) EUV spectral lines in the transition region of solar quiet regions are known to be redshifted. Because the mechanism underlying this phenomenon is unclear, we require additional physical information on the lower corona for limiting the theoretical models. To acquire this information, we measured the Doppler shifts over a wide coronal temperature range (log T[K]=5.7--6.3) using the spectroscopic data taken by the Hinode EUV Imaging Spectrometer. By analyzing the data over the center-to-limb variations covering the meridian from the south to the north pole, we successfully measured the velocity to an accuracy of 3 km/s. Below log T[K] = 6.0, the Doppler shifts of the emission lines were almost zero with an error of 1--3 km/s; above this temperature, they were blueshifted with a gradually increasing magnitude, reaching - 6.3 +/- 2.1 km/s at log T[K]=6.25.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا