Do you want to publish a course? Click here

Local sunspot oscillations and umbral dots

89   0   0.0 ( 0 )
 Added by Robert Sych
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Data analysis of sunspot oscillation based on 6-hr SDO run of observation showed that low frequency (0.2 < ! < 1 mHz) oscillations are local similar to three and five minute oscillations. The oscillations in the sunspot are concentrated in cells of a few arcsec, each of which has its own oscillation spectrum. The analysis of two scenario for sunspot oscillations leads to conclusion that local sunspot oscillations occur due to subphotospheric resonator for slow mhd waves. Empirical models of sunspot atmosphere and the theory of slow waves in thin magnetic flux tubes is applied to the modeling of subphotospheric resonator. Spectrum of local oscillations consists of a great number of lines. This kind of spectrum can occur only if the subphospheric resonator is a magnetic tube with a rather weak magnetic field.Magnetic tubes of this sort are umbral dots that appear due to the convective tongues in the monolithic sunspots. The interrelation of local oscillations with umbral dots and wave fronts of traveling waves in sunspots is discussed.



rate research

Read More

We study the velocity field of umbral dots at a resolution of 0.14. Our analysis is based on full Stokes spectropolarimetric measurements of a pore taken with the CRISP instrument at the Swedish 1-m Solar Telescope. We determine the flow velocity at different heights in the photosphere from a bisector analysis of the Fe I 630 nm lines. In addtion, we use the observed Stokes Q, U, and V profiles to characterize the magnetic properties of these structures. We find that most umbral dots are associated with strong upflows in deep photospheric layers. Some of them also show concentrated patches of downflows at their edges, with sizes of about 0.25, velocities of up to 1000 m/s, and enhanced net circular polarization signals. The downflows evolve rapidly and have lifetimes of only a few minutes. These results appear to validate numerical models of magnetoconvection in the presence of strong magnetic fields.
Context. The solar chromosphere and the lower transition region is believed to play a crucial role in the heating of the solar corona. Models that describe the chromosphere (and the lower transition region), accounting for its highly dynamic and structured character are, so far, found to be lacking. This is partly due to the breakdown of complete frequency redistribution in the chromospheric layers and also because of the difficulty in obtaining complete sets of observations that adequately constrain the solar atmosphere at all relevant heights. Aims. We aim to obtain semi-empirical model atmospheres that reproduce the features of the Mg II h&k line profiles that sample the middle chromosphere with focus on a sunspot. Methods. We use spectropolarimetric observations of the Ca II 8542 A spectra obtained with the Swedish 1-m Solar Telescope (SST) and use NICOLE
We report observations of bright dots (BDs) in a sunspot penumbra using High Resolution Coronal Imager (Hi-C) data in 193 AA and examine their sizes, lifetimes, speeds, and intensities. The sizes of the BDs are on the order of 1arcsec and are therefore hard to identify in the Atmospheric Imaging Assembly (AIA) 193 AA images, which have 1.2arcsec spatial resolution, but become readily apparent with Hi-Cs five times better spatial resolution. We supplement Hi-C data with data from AIAs 193 AA passband to see the complete lifetime of the BDs that appeared before and/or lasted longer than Hi-Cs 3-minute observation period. Most Hi-C BDs show clear lateral movement along penumbral striations, toward or away from the sunspot umbra. Single BDs often interact with other BDs, combining to fade away or brighten. The BDs that do not interact with other BDs tend to have smaller displacements. These BDs are about as numerous but move slower on average than Interface Region Imaging Spectrograph (IRIS) BDs, recently reported by cite{tian14}, and the sizes and lifetimes are on the higher end of the distribution of IRIS BDs. Using additional AIA passbands, we compare the lightcurves of the BDs to test whether the Hi-C BDs have transition region (TR) temperature like that of the IRIS BDs. The lightcurves of most Hi-C BDs peak together in different AIA channels indicating that their temperature is likely in the range of the cooler TR ($1-4times 10^5$ K).
We studied bright umbral dots (UDs) detected in a moderate size sunspot and compared their statistical properties to recent MHD models. The study is based on high resolution data recorded by the New Solar Telescope at the Big Bear Solar Observatory and 3D MHD simulations of sunspots. Observed UDs, living longer than 150 s, were detected and tracked in a 46 min long data set, using an automatic detection code. Total 1553 (620) UDs were detected in the photospheric (low chromospheric) data. Our main findings are: i) none of the analyzed UDs is precisely circular, ii) the diameter-intensity relationship only holds in bright umbral areas, and iii) UD velocities are inversely related to their lifetime. While nearly all photospheric UDs can be identified in the low chromospheric images, some small closely spaced UDs appear in the low chromosphere as a single cluster. Slow moving and long living UDs seem to exist in both the low chromosphere and photosphere, while fast moving and short living UDs are mainly detected in the photospheric images. Comparison to the 3D MHD simulations showed that both types of UDs display, on average, very similar statistical characteristics. However, i) the average number of observed UDs per unit area is smaller than that of the model UDs, and ii) on average, the diameter of model UDs is slightly larger than that of observed ones.
186 - D. Li , X. Yang , X. Y. Bai 2020
Context. The carbon monoxide (CO) molecular line at around 46655 A in solar infrared spectra is often used to investigate the dynamic behavior of the cold heart of the solar atmosphere, i.e., sunspot oscillation, especially at the sunspot umbra. Aims. We investigated sunspot oscillation at Doppler velocities of the CO 7-6 R67 and 3-2 R14 lines that were measured by the Cryogenic Infrared Spectrograph (CYRA), as well as the line profile of Mg II k line that was detected by the Interface Region Imaging Spectrograph (IRIS). Methods. A single Gaussian function is applied to each CO line profile to extract the line shift, while the moment analysis method is used for the Mg II k line. Then the sunspot oscillation can be found in the time-distance image of Doppler velocities, and the quasi-periodicity at the sunspot umbra are determined from the wavelet power spectrum. Finally, the cross-correlation method is used to analyze the phase relation between different atmospheric levels. Results. At the sunspot umbra, a periodicity of roughly 5 min is detected at the Doppler velocity range of the CO 7-6 R67 line that formed in the photosphere, while a periodicity of around 3 min is discovered at the Doppler velocities of CO 3-2 R14 and Mg II k lines that formed in the upper photosphere or the temperature minimum region and the chromosphere. A time delay of about 2 min is measured between the strong CO 3-2 R14 line and the Mg II k line. Conclusions. Based on the spectroscopic observations from the CYRA and IRIS, the 3 min sunspot oscillation can be spatially resolved in the Doppler shifts. It may come from the upper photosphere or the temperature minimum region and then propagate to the chromosphere, which might be regarded as a propagating slow magnetoacoustic wave.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا