No Arabic abstract
In this paper we address the problem of selecting factor-graph permutations of polar codes under belief propagation (BP) decoding to significantly improve the error-correction performance of the code. In particular, we formalize the factor-graph permutation selection as the multi-armed bandit problem in reinforcement learning and propose a decoder that acts like an online-learning agent that learns to select the good factor-graph permutations during the course of decoding. We use state-of-the-art algorithms for the multi-armed bandit problem and show that for a 5G polar codes of length 128 with 64 information bits, the proposed decoder has an error-correction performance gain of around 0.125 dB at the target frame error rate of 10^{-4}, when compared to the approach that randomly selects the factor-graph permutations.
This paper formulates the polar-code construction problem for the successive-cancellation list (SCL) decoder as a maze-traversing game, which can be solved by reinforcement learning techniques. The proposed method provides a novel technique for polar-code construction that no longer depends on sorting and selecting bit-channels by reliability. Instead, this technique decides whether the input bits should be frozen in a purely sequential manner. The equivalence of optimizing the polar-code construction for the SCL decoder under this technique and maximizing the expected reward of traversing a maze is drawn. Simulation results show that the standard polar-code constructions that are designed for the successive-cancellation decoder are no longer optimal for the SCL decoder with respect to the frame error rate. In contrast, the simulations show that, with a reasonable amount of training, the game-based construction method finds code constructions that have lower frame-error rate for various code lengths and decoders compared to standard constructions.
A deep-learning-aided successive-cancellation list (DL-SCL) decoding algorithm for polar codes is introduced with deep-learning-aided successive-cancellation (DL-SC) decoding being a specific case of it. The DL-SCL decoder works by allowing additional rounds of SCL decoding when the first SCL decoding attempt fails, using a novel bit-flipping metric. The proposed bit-flipping metric exploits the inherent relations between the information bits in polar codes that are represented by a correlation matrix. The correlation matrix is then optimized using emerging deep-learning techniques. Performance results on a polar code of length 128 with 64 information bits concatenated with a 24-bit cyclic redundancy check show that the proposed bit-flipping metric in the proposed DL-SCL decoder requires up to 66% fewer multiplications and up to 36% fewer additions, without any need to perform transcendental functions, and by providing almost the same error-correction performance in comparison with the state of the art.
The training complexity of deep learning-based channel decoders scales exponentially with the codebook size and therefore with the number of information bits. Thus, neural network decoding (NND) is currently only feasible for very short block lengths. In this work, we show that the conventional iterative decoding algorithm for polar codes can be enhanced when sub-blocks of the decoder are replaced by neural network (NN) based components. Thus, we partition the encoding graph into smaller sub-blocks and train them individually, closely approaching maximum a posteriori (MAP) performance per sub-block. These blocks are then connected via the remaining conventional belief propagation decoding stage(s). The resulting decoding algorithm is non-iterative and inherently enables a high-level of parallelization, while showing a competitive bit error rate (BER) performance. We examine the degradation through partitioning and compare the resulting decoder to state-of-the-art polar decoders such as successive cancellation list and belief propagation decoding.
Polar codes are a class of channel capacity achieving codes that has been selected for the next generation of wireless communication standards. Successive-cancellation (SC) is the first proposed decoding algorithm, suffering from mediocre error-correction performance at moderate code length. In order to improve the error-correction performance of SC, two approaches are available: (i) SC-List decoding which keeps a list of candidates by running a number of SC decoders in parallel, thus increasing the implementation complexity, and (ii) SC-Flip decoding that relies on a single SC module, and keeps the computational complexity close to SC. In this work, we propose the partitioned SC-Flip (PSCF) decoding algorithm, which outperforms SC-Flip in terms of error-correction performance and average computational complexity, leading to higher throughput and reduced energy consumption per codeword. We also introduce a partitioning scheme that best suits our PSCF decoder. Simulation results show that at equivalent frame error rate, PSCF has up to $5 times$ less computational complexity than the SC-Flip decoder. At equivalent average number of iterations, the error-correction performance of PSCF outperforms SC-Flip by up to $0.15$ dB at frame error rate of $10^{-3}$.
Dynamic successive cancellation flip (DSCF) decoding of polar codes is a powerful algorithm that can achieve the error correction performance of successive cancellation list (SCL) decoding, with a complexity that is close to that of successive cancellation (SC) decoding at practical signal-to-noise ratio (SNR) regimes. However, DSCF decoding requires costly transcendental computations which adversely affect its implementation complexity. In this paper, we first show that a direct application of common approximation schemes on the conventional DSCF decoding results in significant error-correction performance loss. We then introduce a training parameter and propose an approximation scheme which completely removes the need to perform transcendental computations in DSCF decoding, with almost no error-correction performance degradation.