Do you want to publish a course? Click here

Pulse shape study of the fast scintillation light emitted from xenon-doped liquid argon using silicon photomultipliers

98   0   0.0 ( 0 )
 Added by Yi Wang
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Xenon-doped liquid argon has been proposed as a good alternative to pure liquid argon in scintillation detectors. In this study, we report on the measurement of the time profile of scintillation light emitted from xenon-doped liquid argon with molar concentrations up to 1600 ppm. A compact setup has been developed for this study, with silicon photomultiplier (SiPM) as the photosensor and $^{210}mathrm{Po}$ and $^{90}mathrm{Sr}$ as scintillation sources. An effective model based on the de-excitation processes has been developed to describe the data. The results show that xenon-doped liquid argon is a good fast scintillator and can be used in lieu of tetraphenyl butadiene (TPB) in a way that preserves its capability for particle identification via pulse shape discrimination (PSD).



rate research

Read More

359 - D.E. Fields , R. Gibbons , M. Gold 2020
Scintillation from noble gases is an important technique in particle physics including neutrino beam experiments, neutrino-less double beta-decay and dark matter searches. In liquid argon, the possibility of enhancing the light yield by the addition of a small quantity of xenon (doping at 10-1000 ppm) has been of particular interest. While the pathway for energy transfer between argon and xenon excimers is well known, the time-dependence of the process has not been fully studied in the context of a physics-based model. In this paper we present a model of the energy transfer process together with a fit to xenon-doped argon data. We have measured the diffusion limited rate constant as a function of xenon dopant. We find that the time dependence of the energy transfer is consistent with diffusion-limited reactions. Additionally, we find that commercially obtained argon can have a small xenon component (4 ppm). Our result will facilitate the use of xenon-doped liquid argon in future experiments.
We have measured the scintillation and ionization yield of recoiling nuclei in liquid argon as a function of applied electric field by exposing a dual-phase liquid argon time projection chamber (LAr-TPC) to a low energy pulsed narrow band neutron beam produced at the Notre Dame Institute for Structure and Nuclear Astrophysics. Liquid scintillation counters were arranged to detect and identify neutrons scattered in the TPC and to select the energy of the recoiling nuclei. We report measurements of the scintillation yields for nuclear recoils with energies from 10.3 to 57.3 keV and for median applied electric fields from 0 to 970 V/cm. For the ionization yields, we report measurements from 16.9 to 57.3 keV and for electric fields from 96.4 to 486 V/cm. We also report the observation of an anticorrelation between scintillation and ionization from nuclear recoils, which is similar to the anticorrelation between scintillation and ionization from electron recoils. Assuming that the energy loss partitions into excitons and ion pairs from $^{83m}$Kr internal conversion electrons is comparable to that from $^{207}$Bi conversion electrons, we obtained the numbers of excitons ($N_{ex}$) and ion pairs ($N_i$) and their ratio ($N_{ex}/N_i$) produced by nuclear recoils from 16.9 to 57.3 keV. Motivated by arguments suggesting direction sensitivity in LAr-TPC signals due to columnar recombination, a comparison of the light and charge yield of recoils parallel and perpendicular to the applied electric field is presented for the first time.
186 - Y.Y. Gan , M.Y. Guan , Y.P.Zhang 2020
We have measured the properties of scintillation light in liquid argon doped with xenon concentrations from 165 ppm to 10,010 ppm using a $^{22}$Na source. The energy transfer processes in the xenon-doped liquid argon are discussed in detail, and a new waveform model is established and used to fit the average waveform. The time profile of the scintillation photon in the xenon-doped liquid argon and of the TPB emission are presented. The quantities of xenon-doped are controlled by a Mass Flow Controller which is calibrated via a Redusial Gas Analyzer to ensure that the xenon concentration is accurate. In addition, a successful test of $^{83{rm m}}$Kr as a calibration source has been implemented in the xenon-doped liquid argon detector for the first time. By comparing the light yield of the $^{22}$Na and $^{83{rm m}}$Kr, it can be concluded that the scintillation efficiency is almost same over the range of 41.5 keV to 511 keV.
The use of xenon-doped liquid argon is a promising alternative for large pure liquid-argon TPCs. Not only xenon-doped liquid argon enhances the light production, mitigating the possible suppression due to impurities, but also it increases the wavelength of the scintillation light, enlarging the effective Rayleigh scattering length and improving the detection uniformity. ProtoDUNE Dual-Phase is a 300-ton active volume LAr TPC, a prototype for the Deep Underground Neutrino Experiment (DUNE), a dual-site experiment for long-baseline neutrino oscillation studies, neutrino astrophysics and nucleon decay searches. ProtoDUNE Dual-Phase took cosmic muon data at CERN with pure liquid argon and with xenon-doped liquid argon for over a year. The impact of the presence of xenon in the scintillation light and its comparison with the pure liquid argon data will be presented. These results are of interest to any future large LAr TPCs.
130 - Ettore Segreto 2020
Liquid argon is used as active medium in a variety of neutrino and Dark Matter experiments thanks to its excellent properties of charge yield and transport and as a scintillator. Liquid argon scintillation photons are emitted in a narrow band of 10~nm centered around 127 nm and with a characteristic time profile made by two components originated by the decay of the lowest lying singlet and triplet state of the excimer Ar$_2^*$ to the dissociative ground state. A model is proposed which takes into account the quenching of the long lived triplet states through the self-interaction with other triplet states or through the interaction with molecular Ar$_2^+$ ions. The model predicts the time profile of the scintillation signals and its dependence on the intensity of an external electric field and on the density of deposited energy, if the relative abundance of the unquenched fast and slow components is know. The model successfully explains the experimentally observed dependence of the characteristic time of the slow component on the intensity of the applied electric field and the increase of photon yield of liquid argon when doped with small quantities of xenon (at the ppm level). The model also predicts the dependence of the pulse shape parameter, F$_{prompt}$, for electron and nuclear recoils on the recoil energy and the behavior of the relative light yield of nuclear recoils in liquid argon, $mathcal{L}_{eff}$
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا