Do you want to publish a course? Click here

LOCx2-130, a low-power, low-latency, 2 x 4.8-Gbps serializer ASIC for detector front-end readout

74   0   0.0 ( 0 )
 Added by Tiankuan Liu
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper, we present the design and test results of LOCx2-130, a low-power, low-latency, dual-channel transmitter ASIC for detector front-end readout. LOCx2-130 has two channels of encoders and serializers, and each channel operates at 4.8 Gbps. LOCx2-130 can interface with three types of ADCs, an ASIC ADC and two COTS ADCs. LOCx2-130 is fabricated in a commercial 130-nm CMOS technology and is packaged in a 100-pin QFN package. LOCx2-130 consumes 440 mW and achieves a latency of less than 40.7 ns.



rate research

Read More

In this paper, we present a dual-channel serializer ASIC, LOCx2, and its pin-compatible backup, LOCx2-130, for detector front-end readout. LOCx2 is fabricated in a 0.25-um Silicon-on-Sapphire CMOS process and each channel operates at 5.12 Gbps, while LOCx2-130 is fabricated in a 130-nm bulk CMOS process and each channel operates at 4.8 Gbps. The power consumption and the transmission latency are 900 mW and 27 ns for LOCx2 and the corresponding simulation result of LOCx2-130 are 386 mW and 38 ns, respectively.
In this paper, we present the design and test results of LOCx2, a transmitter ASIC for the ATLAS Liquid Argon Calorimeter trigger upgrade. LOCx2 consists of two channels and each channel encodes ADC data with an overhead of 14.3% and transmits serial data at 5.12 Gbps with a latency of less than 27.2 ns. LOCx2 is fabricated with a commercial 0.25-um Silicon-on-Sapphire CMOS technology and is packaged in a 100-pin QFN package. The power consumption of LOCx2 is about 843 mW.
We present our latest ASIC, which is used for the readout of Cadmium Telluride double-sided strip detectors (CdTe DSDs) and high spectroscopic imaging. It is implemented in a 0.35 um CMOS technology (X-Fab XH035), consists of 64 readout channels, and has a function that performs simultaneous AD conversion for each channel. The equivalent noise charge of 54.9 e- +/- 11.3 e- (rms) is measured without connecting the ASIC to any detectors. From the spectroscopy measurements using a CdTe single-sided strip detector, the energy resolution of 1.12 keV (FWHM) is obtained at 13.9 keV, and photons within the energy from 6.4 keV to 122.1 keV are detected. Based on the experimental results, we propose a new low-noise readout architecture making use of a slew-rate limited mode at the shaper followed by a peak detector circuit.
117 - Yu Liang , Lei Zhao , Yuxiang Guo 2019
Time and charge measurements over a large dynamic range from 1 Photo Electron (P.E.) to 4000 P.E. are required for the Water Cherenkov Detector Array (WCDA), which is one of the key components in the Large High Altitude Air Shower Observatory (LHAASO). To simplify the circuit structure of the readout electronics, a front end ASIC was designed. Based on the charge-to-time conversion method, the output pulse width of the ASIC corresponds to the input signal charge information while time information of the input signal is picked off through a discriminator, and thus the time and charge information can be digitized simultaneously using this ASIC and a following Time-to-Digital Converter (TDC). To address the challenge of mismatch among the channels observed in the previous prototype version, this work presents approaches for analyzing the problem and optimizing the circuits. A new version of the ASIC was designed and fabricated in the GLOBALFOUNDRIES 0.35 um CMOS technology, which integrates 6 channels (corresponding to the readout of the 3 PMTs) in each chip. The test results indicate that the mismatch between the channels is significantly reduced to less than 20% using the proposed approach. The time measurement resolution better than 300 ps is achieved, and the charge measurement resolution is better than 10% at 1 P.E., and 1% at 4000 P.E., which meets the application requirements.
We designed a versatile analog front-end chip, called LTARS, for TPC-applications, primarily targeted at dual-phase liquid Ar-TPCs for neutrino experiments and negative-ion $mu$-TPCs for directional dark matter searches. Low-noise performance and wide dynamic range are two requirements for reading out the signals induced on the TPC readout channels. One of the development objectives is to establish the analog processing circuits under low temperature operation, which are designed on function block basis as reusable IPs (Intellectual Properties). The newly developed ASIC was implemented in the Silterra 180~nm CMOS technology and has 16 readout channels. We carried out the performance test at room temperature and the results showed an equivalent noise charge of 2695$pm$71~e$^-$ (rms) with a detector capacitance of 300~pF. The dynamic range was measured to be 20--100~fC in the low-gain mode and 200--1600~fC in the high-gain mode within 10% integral nonlinearity at room temperature. We also tested the performance at the liquid-Ar temperature and found a deterioration of the noise level with a longer shaper time. Based on these results, we also discuss a unique simulation methodology for future cold-electronics development. This method can be applicable to design the electronics used at low temperature.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا