Do you want to publish a course? Click here

LTARS: Analog Readout Front-end ASIC for Versatile TPC-applications

89   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We designed a versatile analog front-end chip, called LTARS, for TPC-applications, primarily targeted at dual-phase liquid Ar-TPCs for neutrino experiments and negative-ion $mu$-TPCs for directional dark matter searches. Low-noise performance and wide dynamic range are two requirements for reading out the signals induced on the TPC readout channels. One of the development objectives is to establish the analog processing circuits under low temperature operation, which are designed on function block basis as reusable IPs (Intellectual Properties). The newly developed ASIC was implemented in the Silterra 180~nm CMOS technology and has 16 readout channels. We carried out the performance test at room temperature and the results showed an equivalent noise charge of 2695$pm$71~e$^-$ (rms) with a detector capacitance of 300~pF. The dynamic range was measured to be 20--100~fC in the low-gain mode and 200--1600~fC in the high-gain mode within 10% integral nonlinearity at room temperature. We also tested the performance at the liquid-Ar temperature and found a deterioration of the noise level with a longer shaper time. Based on these results, we also discuss a unique simulation methodology for future cold-electronics development. This method can be applicable to design the electronics used at low temperature.



rate research

Read More

We present our latest ASIC, which is used for the readout of Cadmium Telluride double-sided strip detectors (CdTe DSDs) and high spectroscopic imaging. It is implemented in a 0.35 um CMOS technology (X-Fab XH035), consists of 64 readout channels, and has a function that performs simultaneous AD conversion for each channel. The equivalent noise charge of 54.9 e- +/- 11.3 e- (rms) is measured without connecting the ASIC to any detectors. From the spectroscopy measurements using a CdTe single-sided strip detector, the energy resolution of 1.12 keV (FWHM) is obtained at 13.9 keV, and photons within the energy from 6.4 keV to 122.1 keV are detected. Based on the experimental results, we propose a new low-noise readout architecture making use of a slew-rate limited mode at the shaper followed by a peak detector circuit.
117 - Yu Liang , Lei Zhao , Yuxiang Guo 2019
Time and charge measurements over a large dynamic range from 1 Photo Electron (P.E.) to 4000 P.E. are required for the Water Cherenkov Detector Array (WCDA), which is one of the key components in the Large High Altitude Air Shower Observatory (LHAASO). To simplify the circuit structure of the readout electronics, a front end ASIC was designed. Based on the charge-to-time conversion method, the output pulse width of the ASIC corresponds to the input signal charge information while time information of the input signal is picked off through a discriminator, and thus the time and charge information can be digitized simultaneously using this ASIC and a following Time-to-Digital Converter (TDC). To address the challenge of mismatch among the channels observed in the previous prototype version, this work presents approaches for analyzing the problem and optimizing the circuits. A new version of the ASIC was designed and fabricated in the GLOBALFOUNDRIES 0.35 um CMOS technology, which integrates 6 channels (corresponding to the readout of the 3 PMTs) in each chip. The test results indicate that the mismatch between the channels is significantly reduced to less than 20% using the proposed approach. The time measurement resolution better than 300 ps is achieved, and the charge measurement resolution is better than 10% at 1 P.E., and 1% at 4000 P.E., which meets the application requirements.
We have developed a dedicated front-end-electronics board for a high-pressure xenon gas time projection chamber for a neutrinoless double-beta decay search. The ionization signal is readout by detecting electroluminescence photons with SiPMs. The board readout the signal from 56~SiPMs through the DC-coupling and record the waveforms at 5 MS/s with a wide dynamic range up to 7,000 photons/200 ns. The SiPM bias voltages are provided by the board and can be adjusted for each SiPM. In order to calibrate and monitor the SiPM gain, additional auxiliary ADC measures 1 photon-equivalent dark current. The obtained performance satisfies the requirement for a neutrinoless double-beta decay search.
Compact multi-channel radiation detectors rely on low noise front-end application specific integrated circuits (ASICs) to achieve high spectral resolution. Here, a new ASIC developed to readout virtual Frisch-grid cadmium zinc telluride (VFG CZT) detectors for gamma ray spectroscopy is presented. Corresponding to each ionizing event in the detector, the ASIC measures the amplitude and timing at the anode, the cathode and four pad sense electrodes associated with each sensor in a detector array. The ASIC is comprised of 52 channels of which there are 4 cathode channels and 48 channels which can be configured as either anode channels with a baseline of 250 mV or pad sense channels to process induced signals with a baseline of 1.2 V. With a static power dissipation of 3 mW, each channel performs low-noise charge amplification, high-order shaping, peak and timing detection along with analog storage and multiplexing. The overall channel linearity was better than $pm$ 1 % with timing resolution down to 700 ps for charges greater than 8 fC in the 3 MeV range. With a 4 x 4 array of 6 mm x 6 mm x 20 mm virtual Frisch-grid bar sensors connected and biased, an electronic resolution of $approx$ 270 rms $e^{-}$ for charges up to 100 fC in the 3.2 MeV range was measured. Spectral measurements obtained with the 3D correction technique demonstrated resolutions of 1.8 % FWHM at 238 keV and 0.9 % FWHM at 662 keV.
The present article introduces a novel ASIC architecture, designed in the context of the ATLAS Tile Calorimeter upgrade program for the High-Luminosity phase of the Large Hadron Collider at CERN. The architecture is based on radiation-tolerant 130 nm Complementary Metal-Oxide-Semiconductor technology, embedding both analog and digital processing of detector signals. A detailed description of the ASIC is given in terms of motivation, design characteristics and simulated and measured performance. Experimental studies, based on 24 prototype units under real particle beam conditions are also presented in order to demonstrate the potential of the architecture as a reliable front-end readout electronic solution.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا