Do you want to publish a course? Click here

EVR-CB-004: An Inflated Hot Subdwarf O star + Unseen WD Companion in a Compact Binary Discovered with the Evryscope

205   0   0.0 ( 0 )
 Added by Jeff Ratzloff
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the discovery of EVR-CB-004, a close binary with a remnant stellar core and an unseen white dwarf companion. The analysis in this work reveals the primary is potentially an inflated hot subdwarf (sdO) and more likely is a rarer post-blue horizontal branch (post-BHB) star. Post-BHBs are the short-lived shell-burning final stage of a blue horizontal star or hot subdwarf before transitioning to a WD. This object was discovered using Evryscope photometric data in a southern-all-sky hot subdwarf variability survey. The photometric light curve for EVR-CB-004 shows multi-component variability from ellipsoidal deformation of the primary and from Doppler boosting as well as gravitational limb darkening. EVR-CB-004 is one of just a handful of known systems, and has a long period (6.08426 hours) and large amplitude ellipsoidal modulation (16.0 $%$ change in brightness from maximum to minimum) for these extremely close binary systems, while the properties of the primary make it a truly unique system. EVR-CB-004 also shows a peculiar low-amplitude (less than $1%$) sinusoidal light curve variation with a period that is a 1/3 resonance of the binary period. We tentatively identify this additional variation source as a tidally-induced resonant pulsation, and we suggest followup observations that could verify this interpretation. From the evolutionary state of the system, its components, and its mass fraction, EVR-CB-004 is a strong merger candidate to form a single high-mass ($approx1.2M_{odot}$) WD. EVR-CB-004 offers a glimpse into a brief phase of a remnant core evolution and secondary variation, not seen before in a compact binary.



rate research

Read More

We present EVR-CB-001, the discovery of a compact binary with an extremely low mass ($.21 pm 0.05 M_{odot}$) helium core white dwarf progenitor (pre-He WD) and an unseen low mass ($.32 pm 0.06 M_{odot}$) helium white dwarf (He WD) companion. He WDs are thought to evolve from the remnant helium-rich core of a main-sequence star stripped during the giant phase by a close companion. Low mass He WDs are exotic objects (only about .2$%$ of WDs are thought to be less than .3 $M_{odot}$), and are expected to be found in compact binaries. Pre-He WDs are even rarer, and occupy the intermediate phase after the core is stripped, but before the star becomes a fully degenerate WD and with a larger radius ($approx .2 R_{odot}$) than a typical WD. The primary component of EVR-CB-001 (the pre-He WD) was originally thought to be a hot subdwarf (sdB) star from its blue color and under-luminous magnitude, characteristic of sdBs. The mass, temperature ($T_{rm eff}=18,500 pm 500 K$), and surface gravity ($log(g)=4.96 pm 0.04$) solutions from this work are lower than values for typical hot subdwarfs. The primary is likely to be a post-RGB, pre-He WD contracting into a He WD, and at a stage that places it nearest to sdBs on color-magnitude and $T_{rm eff}$-$log(g)$ diagrams. EVR-CB-001 is expected to evolve into a fully double degenerate, compact system that should spin down and potentially evolve into a single hot subdwarf star. Single hot subdwarfs are observed, but progenitor systems have been elusive.
We report the discovery of an extremely close, eclipsing binary system. A white dwarf is orbited by a core He-burning compact hot subdwarf star with a period as short as $simeq0.04987 {rm d}$ making this system the most compact hot subdwarf binary discovered so far. The subdwarf will start to transfer helium-rich material on short timescales of less than $50 {rm Myr}$. The ignition of He-burning at the surface may trigger carbon-burning in the core although the WD is less massive than the Chandrasekhar limit ($>0.74,M_{rm odot}$) making this binary a possible progenitor candidate for a supernova type Ia event.
We have conducted a survey of candidate hot subdwarf stars in the southern sky searching for fast transits, eclipses, and sinusoidal like variability in the Evryscope light curves. The survey aims to detect transit signals from Neptune size planets to gas-giants, and eclipses from M-dwarfs and brown dwarfs. The other variability signals are primarily expected to be from compact binaries and reflection effect binaries. Due to the small size of hot subdwarfs, transit and eclipse signals are expected to last only twenty minutes, but with large signal depths (up to completely eclipsing if the orientation is edge on). With its 2-minute cadence and continuous observing Evryscope is well placed to recover these fast transits and eclipses. The very large field of view (8150 sq. deg.) is critical to obtain enough hot subdwarf targets, despite their rarity. We identified 11,000 potential hot subdwarfs from the 9.3M Evryscope light curves for sources brighter than mg = 15. With our machine learning spectral classifier, we flagged high-confidence targets and estimate the total hot subdwarfs in the survey to be 1400. The light curve search detected three planet transit candidates, shown to have stellar companions from followup analysis. We discovered several new compact binaries (including two with unseen degenerate companions, and several others with potentially rare secondaries), two eclipsing binaries with M-dwarf companions, as well as new reflection effect binaries and others with sinusoidal like variability. The hot subdwarf discoveries identified here are spectroscopically confirmed and we verified the Evryscope discovery light curve with TESS light curves when available. Four of the discoveries are in the process of being published in separate followup papers, and we discuss the followup potential of several of the other discoveries.
We report the results of the first X-ray observation of the luminous and helium-rich O-type subdwarf BD+37 442, carried out with the XMM-Newton satellite in August 2011. X-ray emission is detected with a flux of about 3x10^(-14) erg/cm2/s (0.2-1 keV) and a very soft spectrum, well fit by the sum of a blackbody with temperature kT_BB = 45^(+11)_(-9) eV and a power law with a poorly constrained photon index. Significant pulsations with a period of 19.2 s are detected, indicating that the X-ray emission originates in a white dwarf or neutron star companion, most likely powered by accretion from the wind of BD+37 442.
Hot subdwarf B stars (sdBs) are extreme horizontal branch stars believed to originate from close binary evolution. Indeed about half of the known sdB stars are found in close binaries with periods ranging from a few hours to a few days. The enormous mass loss required to remove the hydrogen envelope of the red-giant progenitor almost entirely can be explained by common envelope ejection. A rare subclass of these binaries are the eclipsing HW Vir binaries where the sdB is orbited by a dwarf M star. Here we report the discovery of an HW Vir system in the course of the MUCHFUSS project. A most likely substellar object ($simeq0.068,M_{rm odot}$) was found to orbit the hot subdwarf J08205+0008 with a period of 0.096 days. Since the eclipses are total, the system parameters are very well constrained. J08205+0008 has the lowest unambiguously measured companion mass yet found in a subdwarf B binary. This implies that the most likely substellar companion has not only survived the engulfment by the red-giant envelope, but also triggered its ejection and enabled the sdB star to form. The system provides evidence that brown dwarfs may indeed be able to significantly affect late stellar evolution.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا