No Arabic abstract
We analyze the energy distributions of final (stable) products - gamma rays, neutrinos, and electrons - produced in inelastic proton-proton collisions in the PeV energy regime. We also calculate the energy spectrum of synchrotron radiation from secondary electrons, assuming that these are promptly cooled in the surrounding magnetic field. We show that the synchrotron radiation has an energy distribution much shallower than that of primary protons, and hence we suggest to take advantage of such a feature in the spectral analysis of the highest energy (cut-off) emission region from particle accelerators. For a broad range of energy distributions in the parent protons, we propose simple analytical presentations for the spectra of secondaries in the cut-off region. These results can be used in the interpretation of high-energy radiation from PeVatrons - cosmic-ray factories accelerating protons to energies up to 1 PeV.
Interstellar clouds can act as target material for hadronic cosmic rays; gamma rays subsequently produced through inelastic proton-proton collisions and spatially associated with such clouds can provide a key indicator of efficient particle acceleration. However, even in the case that particle acceleration proceeds up to PeV energies, the system of accelerator and nearby target material must fulfil a specific set of conditions in order to produce a detectable gamma-ray flux. In this study, we rigorously characterise the necessary properties of both cloud and accelerator. By using available Supernova Remnant (SNR) and interstellar cloud catalogues, we produce a ranked shortlist of the most promising target systems, those for which a detectable gamma-ray flux is predicted, in the case that particles are accelerated to PeV energies in a nearby SNR. We discuss detection prospects for future facilities including CTA, LHAASO and SWGO; and compare our predictions with known gamma-ray sources. The four interstellar clouds with the brightest predicted fluxes >100 TeV identified by this model are located at (l,b) = (330.05, 0.13), (15.82, -0.46), (271.09, -1.26), and (21.97, -0.29). These clouds are consistently bright under a range of model scenarios, including variation in the diffusion coefficient and particle spectrum. On average, a detectable gamma-ray flux is more likely for more massive clouds; systems with lower separation distance between the SNR and cloud; and for slightly older SNRs.
We propose magnetically arrested disks (MADs) in quiescent black-hole (BH) binaries as the origin of the multiwavelength emission, and argue that this class of sources can dominate the cosmic-ray spectrum around the knee. X-ray luminosities of Galactic BH binaries in the quiescent state are far below the Eddington luminosity, and thus, radiatively inefficient accretion flows (RIAFs) are formed in the inner region. Strong thermal and turbulent pressures in RIAFs produce outflows, which can create large-scale poloidal magnetic fields. These fields are carried to the vicinity of the BH by the rapid inflow motion, forming a MAD. Inside the MAD, non-thermal protons and electrons are naturally accelerated by magnetic reconnections or stochastic acceleration by turbulence. Both thermal and non-thermal electrons emit broadband photons via synchrotron emission, which are broadly consistent with the optical and X-ray data of the quiescent BH X-ray binaries. Moreover, protons are accelerated up to PeV energies and diffusively escape from these MADs, which can account for the cosmic-ray intensity around the knee energy.
Mildly relativistic, oblique shocks are frequently invoked as possible sites of relativistic particle acceleration and production of strongly variable, polarized multi-wavelength emission from relativistic jet sources such as blazars, via diffusive shock acceleration (DSA). In recent work, we had self-consistently coupled DSA and radiation transfer simulations in blazar jets. These one-zone models determined that the observed spectral energy distributions (SEDs) of blazars strongly constrain the nature of the hydromagnetic turbulence responsible for pitch-angle scattering. In this paper, we expand our previous work by including full time dependence and treating two emission zones, one being the site of acceleration. This modeling is applied to a multiwavelength flare of the flat spectrum radio quasar 3C~279, fitting snap-shot SEDs and light curves. We predict spectral hysteresis patterns in various energy bands as well as cross-band time lags with optical and GeV gamma-rays as well as radio and X-rays tracing each other closely with zero time lag, but radio and X-rays lagging behind the optical and gamma-ray variability by several hours.
X-ray observations of active galactic nuclei (AGN) show variability on timescales ranging from a few hours up to a few days. Some of this variability may be associated with occultation events by clouds in the broad line region. In this work, we aim to model the spectral and polarization variability arising from X-ray obscuration events, serving as probes of the relativistic effects that dominate the emission from the innermost regions. We show that asymmetries can be clearly detected in the AGN spectra as the cloud is shading different parts of the accretion disc. We also show that these effects can be detected in the temporal evolution of the polarization degree ($P$) and the polarization position angle ($Psi$). The variations in $P$ and $Psi$ are highly dependent on the inclination of the system, the position of the primary source and its intrinsic polarization. Considering the disc-corona system only, for an inclination $theta = 30^circ$ (60$^circ$), $P$ increases up to $sim 20$% (30)%, in the 4-8 keV band, when the unpolarized primary source is obscured. However, after accounting for the contribution of parsec-scale material scattering the light in our line of sight (narrow-line region and molecular torus), the variability is smoothed out and the polarization degree can be reduced down to $sim 1$% (2%). Our results suggest that the study of eclipses in AGN with the next generation of X-ray spectral and polarimetric missions could provide unique information on the physics and structure of the innermost regions as well as of the parsec-scale material.
Lunar occultation, which occurs when the Moon crosses sight-lines to distant sources, has been studied extensively through apparent intensity pattern resulting from Fresnel diffraction, and has been successfully used to measure angular sizes of extragalactic sources. However, such observations to-date have been mainly over narrow bandwidth, or averaged over the observing band, and the associated intensity pattern in time has rarely been examined in detail as a function of frequency over a wide band. Here, we revisit the phenomenon of lunar occultation with a view to study the associated intensity pattern as a function of both time and frequency. Through analytical and simulation approach, we examine the variation of intensity across the dynamic spectra, and look for chromatic signatures which could appear as discrete dispersed signal tracks, when the diffraction pattern is adequately smoothed by a finite source size. We particularly explore circumstances in which such diffraction pattern might closely follow the interstellar dispersion law followed by pulsars and transients, such as the Fast Radio Bursts (FRBs), which remain a mystery even after a decade of their discovery. In this paper, we describe details of this investigation, relevant to radio frequencies at which FRBs have been detected, and discuss our findings, along with their implications. We also show how a band-averaged light curve suffers from temporal smearing, and consequent reduction in contrast of intensity variation, with increasing bandwidth. We suggest a way to recover the underlying diffraction signature, as well as the sensitivity improvement commensurate with usage of large bandwidths.