No Arabic abstract
The vibrational anomalies of glasses, in particular the boson peak, are addressed from the standpoint of heterogeneous elasticity, namely the spatial fluctuations of elastic constants caused by the structural disorder of the amorphous materials. In the first part of this review article a mathematical analogy between diffusive motion in a disordered environment and a scalar simplification of vibrational motion under the same condition is emploited. We demonstrate that the disorder-induced long-time tails of diffusion correspond to the Rayleigh scattering law in the vibrational system and that the cross-over from normal to anomalous diffusion corresponds to the boson peak. The anomalous motion arises as soon as the disorder-induced self-energy exceeds the frequency-independent diffusivity/elasticity. For this model a variational scheme is emploited for deriving two mean-field theories of disorder, the self-consistent Born approximation (SCBA) and coherent-potential approximation (CPA). The former applies if the fluctuations are weak and Gaussian, the latter applies for stronger and non-Gaussian fluctuations. In the second part the vectorial theory of heterogenous elasticity is presented and solved in SCBA and CPA, introduced for the scalar model. Both approaches predict and explain the boson-peak and the associated anomalies, namely a dip in the acoustic phase velocity and a characteristic strong increase of the acoustic attenuation below the boson peak. Explicit expressions for the density of states and the inelastic Raman, neutron and X-ray scattering laws are given. Recent conflicting ways of explaining the boson-peak anomalies are discussed.
The inelastic scattering intensities of glasses and amorphous materials has a maximum at a low frequency, the so called Boson peak. Under applied hydrostatic pressure, $P$, the Boson peak frequency, $omega_{rm b}$, is shifted upwards. We have shown previously that the Boson peak is created as a result of a vibrational instability due to the interaction of harmonic quasi localized vibrations (QLV). Applying pressure one exerts forces on the QLV. These shift the low frequency part of the excess spectrum to higher frequencies. For low pressures we find a shift of the Boson peak linear in $P$, whereas for high pressures the shift is $propto P^{1/3}$. Our analytics is supported by simulation. The results are in agreement with the existing experiments.
New temperature dependent inelastic x-ray (IXS) and Raman (RS) scattering data are compared to each other and with existing inelastic neutron scattering data in vitreous silica (v-SiO_2), in the 300 - 1775 K region. The IXS data show collective propagating excitations up to Q=3.5 nm^-1. The temperature behaviour of the excitations at Q=1.6 nm^-1 matches that of the boson peak found in INS and RS. This supports the acoustic origin of the excess of vibrational states giving rise to the boson peak in this glass.
Spatial heterogeneity in the elastic properties of soft random solids is examined via vulcanization theory. The spatial heterogeneity in the emph{structure} of soft random solids is a result of the fluctuations locked-in at their synthesis, which also brings heterogeneity in their emph{elastic properties}. Vulcanization theory studies semi-microscopic models of random-solid-forming systems, and applies replica field theory to deal with their quenched disorder and thermal fluctuations. The elastic deformations of soft random solids are argued to be described by the Goldstone sector of fluctuations contained in vulcanization theory, associated with a subtle form of spontaneous symmetry breaking that is associated with the liquid-to-random-solid transition. The resulting free energy of this Goldstone sector can be reinterpreted as arising from a phenomenological description of an elastic medium with quenched disorder. Through this comparison, we arrive at the statistics of the quenched disorder of the elasticity of soft random solids, in terms of residual stress and Lame-coefficient fields. In particular, there are large residual stresses in the equilibrium reference state, and the disorder correlators involving the residual stress are found to be long-ranged and governed by a universal parameter that also gives the mean shear modulus.
The density of vibrational states $g(omega)$ of an amorphous system is studied by using the random-matrix theory. Taking into account the most important correlations between elements of the random matrix of the system, equations for the density of vibrational states $g(omega)$ are obtained. The analysis of these equations shows that in the low-frequency region the vibrational density of states has the Debye behavior $g(omega) sim omega^2$. In the higher frequency region, there is the boson peak as an additional contribution to the density of states. The obtained equations are in a good agreement with the numerical results and allow us to find an exact shape of the boson peak.
The boson peak in metallic glasses is modeled in terms of local structural shear rearrangements. Using Eshelbys solution of the corresponding elasticity theory problem (J. D. Eshelby, Proc. Roy. Soc. A241, 376 (1957)), one can calculate the saddle point energy of such a structural rearrangement. The neighbourhood of the saddle point gives rise to soft resonant vibrational modes. One can calculate their density, their kinetic energy, their fourth order potential term and their coupling to longitudinal and transverse sound waves.