Do you want to publish a course? Click here

Admissible vectors and Radon-Nikodym theorems

60   0   0.0 ( 0 )
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

Admissible vectors lead to frames or coherent states under the action of a group by means of square integrable representations. This work shows that admissible vectors can be seen as weights with central support on the (left) group von Neumann algebra. The analysis involves spatial and cocycle derivatives, noncommutative $L^p$-Fourier transforms and Radon-Nikodym theorems. Square integrability confine the weights in the predual of the algebra and everything may be written in terms of a (right selfdual) bounded element.



rate research

Read More

We clarify the relation between inverse systems, the Radon-Nikodym property, the Asymptotic Norming Property of James-Ho, and the GFDA spaces introduced in our earlier paper on differentiability of Lipschitz maps into Banach spaces.
If $mu_1,mu_2,dots$ are positive measures on a measurable space $(X,Sigma)$ and $v_1,v_2, dots$ are elements of a Banach space ${mathbb E}$ such that $sum_{n=1}^infty |v_n| mu_n(X) < infty$, then $omega (S)= sum_{n=1}^infty v_n mu_n(S)$ defines a vector measure of bounded variation on $(X,Sigma)$. We show ${mathbb E}$ has the Radon-Nikodym property if and only if every ${mathbb E}$-valued measure of bounded variation on $(X,Sigma)$ is of this form. As an application of this result we show that under natural conditions an operator defined on positive measures, has a unique extension to an operator defined on ${mathbb E}$-valued measures for any Banach space ${mathbb E}$ that has the Radon-Nikodym property.
We study the computational content of the Radon-Nokodym theorem from measure theory in the framework of the representation approach to computable analysis. We define computable measurable spaces and canonical representations of the measures and the integrable functions on such spaces. For functions f,g on represented sets, f is W-reducible to g if f can be computed by applying the function g at most once. Let RN be the Radon-Nikodym operator on the space under consideration and let EC be the non-computable operator mapping every enumeration of a set of natural numbers to its characteristic function. We prove that for every computable measurable space, RN is W-reducible to EC, and we construct a computable measurable space for which EC is W-reducible to RN.
Let $F$ and $G$ be two bounded operators on two Hilbert spaces. Let their numerical radii be no greater than one. This note investigate when there is a $Gamma$-contraction $(S,P)$ such that $F$ is the fundamental operator of $(S,P)$ and $G$ is the fundamental operator of $(S^*,P^*)$. Theorem 1 puts a necessary condition on $F$ and $G$ for them to be the fundamental operators of $(S,P)$ and $(S^*,P^*)$ respectively. Theorem 2 shows that this necessary condition is sufficient too provided we restrict our attention to a certain special case. The general case is investigated in Theorem 3. Some of the results obtained for $Gamma$-contractions are then applied to tetrablock contractions to figure out when two pairs $(F_1, F_2)$ and $(G_1, G_2)$ acting on two Hilbert spaces can be fundamental operators of a tetrablock contraction $(A, B, P)$ and its adjoint $(A^*, B^*, P^*)$ respectively. This is the content of Theorem 4.
We study the different horospherical Radon transforms that arise by regarding a homogeneous tree T as a simplicial complex whose simplices are vertices V, edges E or flags F (flags are oriented edges). The ends (infinite geodesic rays starting at a reference vertex) provide a boundary $Omega$ for the tree. Then the horospheres form a trivial principal fiber bundle with base $Omega$ and fiber $mathZ$. There are three such fiber bundles, consisting of horospheres of vertices, edges or flags, but they are isomorphic: however, no isomorphism between these fiber bundles maps special sections to special sections (a special section consists of the set of horospheres through a given vertex, edge or flag). The groups of automorphisms of the fiber bundles contain a subgroup $A$ of parallel shifts, analogous to the Cartan subgroup of a semisimple group. The normalized eigenfunctions of the Laplace operator on T are boundary integrals of complex powers of the Poisson kernel, that is characters of $A$, and are matrix coefficients of representations induced from $A$ in the sense of Mackey, the so-called spherical representations. The vertex-horospherical Radon transform consists of summation over V in each vertex-horosphere, and similarly for edges or flags. We prove inversion formulas for all these Radon transforms, and give applications to harmonic analysis and the Plancherel measure on T. We show via integral geometry that the spherical representations for vertices and edges are equivalent. Also, we define the Radon back-projections and find the inversion operator of each Radon transform by composing it with its back-projection. This gives rise to a convolution operator on T, whose symbol is obtained via the spherical Fourier transform, and its reciprocal is the symbol of the Radon inversion formula.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا