Do you want to publish a course? Click here

A unified algebraic underpinning for the Hahn polynomials and rational functions

101   0   0.0 ( 0 )
 Added by Luc Vinet
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

An algebra denoted $mmathfrak{H}$ with three generators is introduced and shown to admit embeddings of the Hahn algebra and the rational Hahn algebra. It has a real version of the deformed Jordan plane as a subalgebra whose connection with Hahn polynomials is established. Representation bases corresponding to eigenvalue or generalized eigenvalue problems involving the generators are considered. Overlaps between these bases are shown to be bispectral orthogonal polynomials or biorthogonal rational functions thereby providing a unified description of these functions based on $mmathfrak{H}$. Models in terms of differential and difference operators are used to identify explicitly the underlying special functions as Hahn polynomials and rational functions and to determine their characterizations. An embedding of $mmathfrak{H}$ in $mathcal{U}(mathfrak{sl}_2)$ is presented. A Pade approximation table for the binomial function is obtained as a by-product.



rate research

Read More

The Cholesky factorization of the moment matrix is considered for the generalized Charlier, generalized Meixner and generalized Hahn of type I discrete orthogonal polynomials. For the generalized Charlier we present an alternative derivation of the Laguerre-Freud relations found by Smet and Van Assche. Third order and second order order nonlinear ordinary differential equations are found for the recursion coefficient $gamma_n$. Laguerre-Freud relations are also found for the generalized Meixner case, which are compared with those of Smet and Van Assche. Finally, the generalized Hahn of type I discrete orthogonal polynomials are studied as well, and Laguerre-Freud equations are found and the differences with the equations found by Dominici and by Filipuk and Van Assche are given.
Orbit functions of a simple Lie group/Lie algebra L consist of exponential functions summed up over the Weyl group of L. They are labeled by the highest weights of irreducible finite dimensional representations of L. They are of three types: C-, S- and E-functions. Orbit functions of the Lie algebras An, or equivalently, of the Lie group SU(n+1), are considered. First, orbit functions in two different bases - one orthonormal, the other given by the simple roots of SU(n) - are written using the isomorphism of the permutation group of n elements and the Weyl group of SU(n). Secondly, it is demonstrated that there is a one-to-one correspondence between classical Chebyshev polynomials of the first and second kind, and C- and $S$-functions of the simple Lie group SU(2). It is then shown that the well-known orbit functions of SU(n) are straightforward generalizations of Chebyshev polynomials to n-1 variables. Properties of the orbit functions provide a wealth of properties of the polynomials. Finally, multivariate exponential functions are considered, and their connection with orbit functions of SU(n) is established.
The Cholesky factorization of the moment matrix is applied to discrete orthogonal polynomials on the homogeneous lattice. In particular, semiclassical discrete orthogonal polynomials, which are built in terms of a discrete Pearson equation, are studied. The Laguerre-Freud structure semi-infinite matrix that models the shifts by $pm 1$ in the independent variable of the set of orthogonal polynomials is introduced. In the semiclassical case it is proven that this Laguerre-Freud matrix is banded. From the well known fact that moments of the semiclassical weights are logarithmic derivatives of generalized hypergeometric functions, it is shown how the contiguous relations for these hypergeometric functions translate as symmetries for the corresponding moment matrix. It is found that the 3D Nijhoff-Capel discrete Toda lattice describes the corresponding contiguous shifts for the squared norms of the orthogonal polynomials. The continuous Toda for these semiclassical discrete orthogonal polynomials is discussed and the compatibility equations are derived. It also shown that the Kadomtesev-Petvishvilii equation is connected to an adequate deformed semiclassical discrete weight, but in this case the deformation do not satisfy a Pearson equation.
145 - Ilia Krasikov 2002
We shall give bounds on the spacing of zeros of certain functions belonging to the Laguerre-Polya class and satisfying a second order differential equation. As a corollary we establish new sharp inequalities on the extreme zeros of the Hermite, Laguerre and Jacobi polinomials, which are uniform in all the parameters.
A new recurrence relation for exceptional orthogonal polynomials is proposed, which holds for type 1, 2 and 3. As concrete examples, the recurrence relations are given for Xj-Hermite, Laguerre and Jacobi polynomials in j = 1,2 case.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا