Do you want to publish a course? Click here

Clinically Translatable Direct Patlak Reconstruction from Dynamic PET with Motion Correction Using Convolutional Neural Network

213   0   0.0 ( 0 )
 Added by Kuang Gong
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Patlak model is widely used in 18F-FDG dynamic positron emission tomography (PET) imaging, where the estimated parametric images reveal important biochemical and physiology information. Because of better noise modeling and more information extracted from raw sinogram, direct Patlak reconstruction gains its popularity over the indirect approach which utilizes reconstructed dynamic PET images alone. As the prerequisite of direct Patlak methods, raw data from dynamic PET are rarely stored in clinics and difficult to obtain. In addition, the direct reconstruction is time-consuming due to the bottleneck of multiple-frame reconstruction. All of these impede the clinical adoption of direct Patlak reconstruction.In this work, we proposed a data-driven framework which maps the dynamic PET images to the high-quality motion-corrected direct Patlak images through a convolutional neural network. For the patient motion during the long period of dynamic PET scan, we combined the correction with the backward/forward projection in direct reconstruction to better fit the statistical model. Results based on fifteen clinical 18F-FDG dynamic brain PET datasets demonstrates the superiority of the proposed framework over Gaussian, nonlocal mean and BM4D denoising, regarding the image bias and contrast-to-noise ratio.



rate research

Read More

An approach to reduce motion artifacts in Quantitative Susceptibility Mapping using deep learning is proposed. We use an affine motion model with randomly created motion profiles to simulate motion-corrupted QSM images. The simulated QSM image is paired with its motion-free reference to train a neural network using supervised learning. The trained network is tested on unseen simulated motion-corrupted QSM images, in healthy volunteers and in Parkinsons disease patients. The results show that motion artifacts, such as ringing and ghosting, were successfully suppressed.
PET image reconstruction is challenging due to the ill-poseness of the inverse problem and limited number of detected photons. Recently deep neural networks have been widely and successfully used in computer vision tasks and attracted growing interests in medical imaging. In this work, we trained a deep residual convolutional neural network to improve PET image quality by using the existing inter-patient information. An innovative feature of the proposed method is that we embed the neural network in the iterative reconstruction framework for image representation, rather than using it as a post-processing tool. We formulate the objective function as a constraint optimization problem and solve it using the alternating direction method of multipliers (ADMM) algorithm. Both simulation data and hybrid real data are used to evaluate the proposed method. Quantification results show that our proposed iterative neural network method can outperform the neural network denoising and conventional penalized maximum likelihood methods.
Defining methods for the automatic understanding of gestures is of paramount importance in many application contexts and in Virtual Reality applications for creating more natural and easy-to-use human-computer interaction methods. In this paper, we present a method for the recognition of a set of non-static gestures acquired through the Leap Motion sensor. The acquired gesture information is converted in color images, where the variation of hand joint positions during the gesture are projected on a plane and temporal information is represented with color intensity of the projected points. The classification of the gestures is performed using a deep Convolutional Neural Network (CNN). A modified version of the popular ResNet-50 architecture is adopted, obtained by removing the last fully connected layer and adding a new layer with as many neurons as the considered gesture classes. The method has been successfully applied to the existing reference dataset and preliminary tests have already been performed for the real-time recognition of dynamic gestures performed by users.
Reconstruction of PET images is an ill-posed inverse problem and often requires iterative algorithms to achieve good image quality for reliable clinical use in practice, at huge computational costs. In this paper, we consider the PET reconstruction a dense prediction problem where the large scale contextual information is essential, and propose a novel architecture of multi-scale fully convolutional neural networks (msfCNN) for fast PET image reconstruction. The proposed msfCNN gains large receptive fields with both memory and computational efficiency, by using a downscaling-upscaling structure and dilated convolutions. Instead of pooling and deconvolution, we propose to use the periodic shuffling operation from sub-pixel convolution and its inverse to scale the size of feature maps without losing resolution. Residual connections were added to improve training. We trained the proposed msfCNN model with simulated data, and applied it to clinical PET data acquired on a Siemens mMR scanner. The results from real oncological and neurodegenerative cases show that the proposed msfCNN-based reconstruction outperforms the iterative approaches in terms of computational time while achieving comparable image quality for quantification. The proposed msfCNN model can be applied to other dense prediction tasks, and fast msfCNN-based PET reconstruction could facilitate the potential use of molecular imaging in interventional/surgical procedures, where cancer surgery can particularly benefit.
Direct reconstruction methods have been developed to estimate parametric images directly from the measured PET sinograms by combining the PET imaging model and tracer kinetics in an integrated framework. Due to limited counts received, signal-to-noise-ratio (SNR) and resolution of parametric images produced by direct reconstruction frameworks are still limited. Recently supervised deep learning methods have been successfully applied to medical imaging denoising/reconstruction when large number of high-quality training labels are available. For static PET imaging, high-quality training labels can be acquired by extending the scanning time. However, this is not feasible for dynamic PET imaging, where the scanning time is already long enough. In this work, we proposed an unsupervised deep learning framework for direct parametric reconstruction from dynamic PET, which was tested on the Patlak model and the relative equilibrium Logan model. The patients anatomical prior image, which is readily available from PET/CT or PET/MR scans, was supplied as the network input to provide a manifold constraint, and also utilized to construct a kernel layer to perform non-local feature denoising. The linear kinetic model was embedded in the network structure as a 1x1 convolution layer. The training objective function was based on the PET statistical model. Evaluations based on dynamic datasets of 18F-FDG and 11C-PiB tracers show that the proposed framework can outperform the traditional and the kernel method-based direct reconstruction methods.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا