No Arabic abstract
Inorganic halide perovskites have emerged as a promising platform in a wide range of applications from solar energy harvesting to computing, and light emission. The recent advent of epitaxial thin film growth of halide perovskites has made it possible to investigate low-dimensional quantum electronic devices based on this class of materials. This study leverages advances in vapor-phase epitaxy of halide perovskites to perform low-temperature magnetotransport measurements on single-domain cesium tin iodide (CsSnI$_3$) epitaxial thin films. The low-field magnetoresistance carries signatures of coherent quantum interference effects and spin-orbit coupling. These weak anti-localization measurements reveal a micron-scale low-temperature phase coherence length for charge carriers in this system. The results indicate that epitaxial halide perovskite heterostructures are a promising platform for investigating long coherent quantum electronic effects and potential applications in spintronics and spin-orbitronics.
Microscopic pathways of structural phase transitions are difficult to probe because they occur over multiple, disparate time and length scales. Using $in$ $situ$ nanoscale cathodoluminescence microscopy, we visualize the thermally-driven transition to the perovskite phase in hundreds of non-perovskite phase nanowires, resolving the initial nanoscale nucleation and subsequent mesoscale growth and quantifying the activation energy for phase propagation. In combination with molecular dynamics computer simulations, we reveal that the transformation does not follow a simple martensitic mechanism, and proceeds via ion diffusion through a liquid-like interface between the two structures. While cations are disordered in this liquid-like region, the halide ions retain substantial spatial correlations. We find that the anisotropic crystal structure translates to faster nucleation of the perovskite phase at nanowire ends and faster growth along the long nanowire axis. These results represent a significant step towards manipulating structural phases at the nanoscale for designer materials properties.
Nanostructured semiconductors emit light from electronic states known as excitons[1]. According to Hunds rules[2], the lowest energy exciton in organic materials should be a poorly emitting triplet state. Analogously, the lowest exciton level in all known inorganic semiconductors is believed to be optically inactive. These dark excitons (into which the system can relax) hinder light-emitting devices based on semiconductor nanostructures. While strategies to diminish their influence have been developed[3-5], no materials have been identified in which the lowest exciton is bright. Here we show that the lowest exciton in quasi-cubic lead halide perovskites is optically active. We first use the effective-mass model and group theory to explore this possibility, which can occur when the strong spin-orbit coupling in the perovskite conduction band is combined with the Rashba effect [6-10]. We then apply our model to CsPbX3 (X=Cl,Br,I) nanocrystals[11], for which we measure size- and composition-dependent fluorescence at the single-nanocrystal level. The bright character of the lowest exciton immediately explains the anomalous photon-emission rates of these materials, which emit 20 and 1,000 times faster[12] than any other semiconductor nanocrystal at room[13-16] and cryogenic[17] temperatures, respectively. The bright exciton is further confirmed by detailed analysis of the fine structure in low-temperature fluorescence spectra. For semiconductor nanocrystals[18], which are already used in lighting[19,20], lasers[21,22], and displays[23], these optically active excitons can lead to materials with brighter emission and enhanced absorption. More generally, our results provide criteria for identifying other semiconductors exhibiting bright excitons with potentially broad implications for optoelectronic devices.
Implementing topological insulators as elementary units in quantum technologies requires a comprehensive understanding of the dephasing mechanisms governing the surface carriers in these materials, which impose a practical limit to the applicability of these materials in such technologies requiring phase coherent transport. To investigate this, we have performed magneto-resistance (MR) and conductance fluctuations (CF) measurements in both exfoliated and molecular beam epitaxy grown samples. The phase breaking length ($l_{phi}$) obtained from MR shows a saturation below sample dependent characteristic temperatures, consistent with that obtained from CF measurements. We have systematically eliminated several factors that may lead to such behavior of $l_{phi}$ in the context of TIs, such as finite size effect, thermalization, spin-orbit coupling length, spin-flip scattering, and surface-bulk coupling. Our work indicates the need to identify an alternative source of dephasing that dominates at low $T$ in topological insulators, causing saturation in the phase breaking length and time.
Quantum defects have shown to play an essential role for the non-radiative recombination in metal halide perovskites (MHPs). Nonetheless, the processes of charge transfer-assisted by defects are still ambiguous. Herein, we theoretically study the non-radiative multiphonon processes among different types of quantum defects in MHPs using Markvart model for the induced mechanisms of electron-electron and electron-phonon interactions, respectively. We find that charge carrier can transfer between the neighboring levels of the same type shallow defects by multiphonon processes, but it will be distinctly suppressed with the increasing of the defect depth. For the non-radiation multiphonon transitions between donor- and acceptor-like defects, the processes are very fast and independence of the defect depth, which provide a possible explanation for the blinking phenomena of photoluminescence spectra in recent experiment. We also discuss the temperature dependence of these multiphonon processes and find that their variational trends depend on the comparison of Huang-Rhys factor with the emitted phonon number. These theoretical results fill some gaps of defect-assisted non-radiative processes in the perovskites materials.
The two-dimensional layered compound PdCoO$_2$ is one of the best oxide conductors, providing an intriguing research arena opened by the long mean free path and the very high mobility of ~51000 cm2/Vs. These properties turn PdCoO$_2$ into a candidate material for nanoscale quantum devices. By exploring universal conductance fluctuations originating at nanoscale PdCoO$_2$ Hall-bar devices, we determined the phase coherence length of electron transport in c-axis oriented PdCoO$_2$ thin films to equal ~100 nm. The weak temperature dependence of the measured phase coherence length suggests that defect scattering at twin boundaries in the PdCoO$_2$ thin film governs phase breaking. These results suggest that phase coherent devices can be achieved by realizing the devices smaller than the size of twin domains, via refined microfabrication and suppression of twin boundaries.