Do you want to publish a course? Click here

Signatures of a spin-1/2 cooperative paramagnet in the diluted triangular lattice of Y$_2$CuTiO$_6$

110   0   0.0 ( 0 )
 Added by D.D. Sarma
 Publication date 2020
  fields Physics
and research's language is English
 Authors S. Kundu




Ask ChatGPT about the research

We present a combination of thermodynamic and dynamic experimental signatures of a disorder driven dynamic cooperative paramagnet in a 50% site diluted triangular lattice spin-1/2 system, Y$_2$CuTiO$_6$. Magnetic ordering and spin freezing are absent down to 50 mK, far below the Curie Weiss scale of ~-134 K. We observe scaling collapses of the magnetic field- and temperature-dependent magnetic heat capacity and magnetisation data, respectively, in conformity with expectations from the random singlet physics. Our experiments establish the suppression of any freezing scale, if at all present, by more than three orders of magnitude, opening a plethora of interesting possibilities such as disorder-stabilized long range quantum entangled ground states.



rate research

Read More

118 - N. Li , Q. Huang , A. Brassington 2021
We have grown single crystals of Na$_2$BaNi(PO$_4$)$_2$, a new spin-1 equilateral triangular lattice antiferromagnet (ETLAF), and performed magnetic susceptibility, specific heat and thermal conductivity measurements at ultralow temperatures. The main results are (i) at zero magnetic field, Na$_2$BaNi(PO$_4$)$_2$ exhibits a magnetic ordering at 430 mK with a weak ferromagnetic moment along the $c$ axis. This suggests a canted 120$^circ$ spin structure, which is in a plane including the crystallographic $c$ axis due to the existence of an easy-axis anisotropy and ferromagnetically stacked along the $c$ axis; (ii) with increasing field along the $c$ axis, a 1/3 magnetization plateau is observed which means the canted 120$^circ$ spin structure is transformed to a up up down (UUD) spin structure. With even higher fields, the UUD phase further evolves to possible V and V phases; (iii) with increasing field along the $a$ axis, the canted 120$^circ$ spin structure is possibly transformed to a umbrella phase and a V phase. Therefore, Na$_2$BaNi(PO$_4$)$_2$ is a rare example of spin-1 ETLAF with single crystalline form to exhibit easy-axis spin anisotropy and series of quantum spin state transitions.
We found new two-dimensional (2D) quantum (S=1/2) antiferromagnetic systems: CuRE2Ge2O8 (RE=Y and La). According to our analysis of high-resolution X-ray and neutron diffraction experiments, the Cu-network of CuRE2Ge2O8 (RE=Y and La) exhibits a 2D triangular lattice linked via weak bonds along the perpendicular b-axis. Our bulk characterizations from 0.08 to 400 K show that they undergo a long-range order at 0.51(1) and 1.09(4) K for the Y and La systems, respectively. Interestingly, they also exhibit field induced phase transitions. For theoretical understanding, we carried out the density functional theory (DFT) band calculations to find that they are typical charge-transfer-type insulators with a gap of Eg = 2 eV. Taken together, our observations make CuRE2Ge2O8 (RE=Y and La) additional examples of low-dimensional quantum spin triangular antiferromagnets with the low-temperature magnetic ordering.
We report thermodynamic properties, magnetic ground state, and microscopic magnetic model of the spin-1 frustrated antiferromaget Li$_{2}$NiW$_{2}$O$_{8}$ showing successive transitions at $T_{rm N1}simeq 18$ K and $T_{rm N2}simeq 12.5$ K in zero field. Nuclear magnetic resonance and neutron diffraction reveal collinear and commensurate magnetic order with the propagation vector $mathbf k=(frac12,0,frac12)$ below $T_{rm N2}$. The ordered moment of 1.8 $mu_B$ at 1.5 K is directed along $[0.89(9),-0.10(5),-0.49(6)]$ and matches the magnetic easy axis of spin-1 Ni$^{2+}$ ions, which is determined by the scissor-like distortion of the NiO$_6$ octahedra. Incommensurate magnetic order, presumably of spin-density-wave type, is observed in the region between $T_{rm N2}$ and $T_{rm N1}$. Density-functional band-structure calculations put forward a three-dimensional spin lattice with spin-1 chains running along the $[01bar 1]$ direction and stacked on a spatially anisotropic triangular lattice in the $ab$ plane. We show that the collinear magnetic order in Li$_2$NiW$_2$O$_8$ is incompatible with the triangular lattice geometry and thus driven by a pronounced easy-axis single-ion anisotropy of Ni$^{2+}$.
Dirac matters provide a platform for exploring the interplay of their carriers with other quantum phenomena. Sr$_{1-x}$Mn$_{1-y}$Sb$_2$ has been proposed to be a magnetic Weyl semimetal and provides an excellent platform to study the coupling between Weyl fermions and magnons. Here, we report comprehensive inelastic neutron scattering (INS) measurements on single crystals of Sr$_{1-x}$Mn$_{1-y}$Sb$_2$, which have been well characterized by magnetization and magnetotransport measurements, both of which demonstrate that the material is a topologically nontrivial semimetal. The INS spectra clearly show a spin gap of $sim6$ meV. The dispersion in the magnetic Mn layer extends up to about 76 meV, while that between the layers has a narrow band width of 6 meV. We find that the linear spin-wave theory using a Heisenberg spin Hamiltonian can reproduce the experimental spectra with the following parameters: a nearest-neighbor ($SJ_1sim28.0$ meV) and next-nearest-neighbor in-plane exchange interaction ($SJ_2sim9.3$ meV) , interlayer exchange coupling ($SJ_csim-0.1$ meV), and spin anisotropy constant ($SDsim-0.07$ meV). Despite the coexistence of Weyl fermions and magnons, we find no clear evidence that the magnetic dynamics are influenced by the Weyl fermions in Sr$_{1-x}$Mn$_{1-y}$Sb$_2$, possibly because that the Weyl fermions and magnons reside in the Sb and Mn layers separately, and the interlayer coupling is weak due to the quasi-two-dimensional nature of the material, as also evident from the small $SJ_c$ of -0.1 meV.
88 - R. Rawl , L. Ge , Z. Lu 2019
We successfully synthesized and characterized the triangular lattice anitferromagnet Ba$_8$MnNb$_6$O$_{24}$, which comprises equilateral spin-5/2 Mn$^{2+}$ triangular layers separated by six non-magnetic Nb$^{5+}$ layers. The detailed susceptibility, specific heat, elastic and inelastic neutron scattering measurements, and spin wave theory simulation on this system reveal that it has a 120 degree ordering ground state below T$_N$ = 1.45 K with in-plane nearest-neighbor exchange interaction ~0.11 meV. While the large separation 18.9 A between magnetic layers makes the inter-layer exchange interaction virtually zero, our results suggest that a weak easy-plane anisotropy is the driving force for the k$_m$ = (1/3 1/3 0) magnetic ordering. The magnetic properties of Ba$_8$MnNb$_6$O$_{24}$, along with its classical excitation spectra, contrast with the related triple perovskite Ba$_3$MnNb$_2$O$_9$, which shows easy-axis anisotropy, and the iso-structural compound Ba$_8$CoNb$_6$O$_{24}$, in which the effective spin-1/2 Co$^{2+}$ spins do not order down to 60 mK and in which the spin dynamics shows sign of strong quantum effects.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا