Do you want to publish a course? Click here

Properties of spin 1/2 triangular lattice antiferromagnets: CuRE2Ge2O8 (RE=Y, La)

62   0   0.0 ( 0 )
 Added by Hwanbeom Cho
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We found new two-dimensional (2D) quantum (S=1/2) antiferromagnetic systems: CuRE2Ge2O8 (RE=Y and La). According to our analysis of high-resolution X-ray and neutron diffraction experiments, the Cu-network of CuRE2Ge2O8 (RE=Y and La) exhibits a 2D triangular lattice linked via weak bonds along the perpendicular b-axis. Our bulk characterizations from 0.08 to 400 K show that they undergo a long-range order at 0.51(1) and 1.09(4) K for the Y and La systems, respectively. Interestingly, they also exhibit field induced phase transitions. For theoretical understanding, we carried out the density functional theory (DFT) band calculations to find that they are typical charge-transfer-type insulators with a gap of Eg = 2 eV. Taken together, our observations make CuRE2Ge2O8 (RE=Y and La) additional examples of low-dimensional quantum spin triangular antiferromagnets with the low-temperature magnetic ordering.



rate research

Read More

109 - S. Kundu 2020
We present a combination of thermodynamic and dynamic experimental signatures of a disorder driven dynamic cooperative paramagnet in a 50% site diluted triangular lattice spin-1/2 system, Y$_2$CuTiO$_6$. Magnetic ordering and spin freezing are absent down to 50 mK, far below the Curie Weiss scale of ~-134 K. We observe scaling collapses of the magnetic field- and temperature-dependent magnetic heat capacity and magnetisation data, respectively, in conformity with expectations from the random singlet physics. Our experiments establish the suppression of any freezing scale, if at all present, by more than three orders of magnitude, opening a plethora of interesting possibilities such as disorder-stabilized long range quantum entangled ground states.
A triangular lattice selenide series of rare earth (RE), CsRESe2, were synthesized as large single crystals using a flux growth method. This series stabilized in either trigonal (R-3m) or hexagonal (P63/mmc) crystal systems. Physical properties of CsRESe2 were explored by magnetic susceptibility and heat capacity measurements down to 0.4 K. Antiferromagnetic interaction was observed in all magnetic compounds, while no long-range magnetic order was found, indicating the frustrated magnetism. CsDySe2 presents spin freezing at 0.7 K, revealing a spin-glass state. CsCeSe2 and CsYbSe2 present broad peaks at 0.7 K and 1.5 K in the magnetization, respectively, suggesting the short-range interactions between magnetic rare earth ions. The lack of signature for long-range magnetic order and spin freezing down to 0.4 K in these compounds (RE = Ce, Yb) implies their candidacy for quantum spin liquid state.
Motivated by various spin-1/2 compounds like Cs$_2$CuCl$_4$ or $kappa$-(BEDT-TTF)$_2$Cu$_2$(CN)$_3$, we derive a Raman-scattering operator {it `a la} Shastry and Shraiman for various geometries. For T=0, the exact spectra is computed by Lanczos algorithm for finite-size clusters. We perform a systematic investigation as a function of $J_2/J_1$, the exchange constant ratio: ranging from $J_2=0$, the well known square-lattice case, to $J_2/J_1=1$ the isotropic triangular lattice. We discuss the polarization dependence of the spectra and show how it can be used to detect precursors of the instabilities of the ground state against quantum fluctuations.
We study effects of nonmagnetic impurities in a spin-1/2 frustrated triangular antiferromagnet with the aim of understanding the observed broadening of $^{13}$C NMR lines in the organic spin liquid material $kappa$-(ET)$_2$Cu$_2$(CN)$_3$. For high temperatures down to $J/3$, we calculate local susceptibility near a nonmagnetic impurity and near a grain boundary for the nearest neighbor Heisenberg model in high temperature series expansion. We find that the local susceptibility decays to the uniform one in few lattice spacings, and for a low density of impurities we would not be able to explain the line broadening present in the experiments already at elevated temperatures. At low temperatures, we assume a gapless spin liquid with a Fermi surface of spinons. We calculate the local susceptibility in the mean field and also go beyond the mean field by Gutzwiller projection. The zero temperature local susceptibility decays as a power law and oscillates at $2 k_F$. As in the high temperature analysis we find that a low density of impurities is not able to explain the observed broadening of the lines. We are thus led to conclude that there is more disorder in the system. We find that a large density of point-like disorder gives broadening that is consistent with the experiment down to about 5K, but that below this temperature additional mechanism is likely needed.
Here, we report the synthesis and magnetic properties of a Yb-based triangular-lattice compound LiYbS$_2$. At low temperatures, it features an effective spin-$frac{1}{2}$ state due to the combined effect of crystal electric field and spin orbit coupling. Magnetic susceptibility measurements and $^7$Li nuclear magnetic resonance experiments reveal the absence of magnetic long range ordering down to 2~K, which suggests a possible quantum spin liquid ground state. A dominant antiferromagnetic nearest neighbour exchange interaction $J/k_{rm B}simeq$ 5.3~K could be extracted form the magnetic susceptibility. The NMR linewidth analysis yields the coupling constant between the Li nuclei and Yb$^{3+}$ ions which was found to be purely dipolar in nature.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا