Do you want to publish a course? Click here

5G meets Construction Machines: Towards a Smart working Site

283   0   0.0 ( 0 )
 Added by Yusheng Xiang
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

The fleet management of mobile working machines with the help of connectivity can increase safety and productivity. Although in our previous study, we proposed a solution to use IEEE 802.11p to achieve the fleet management of construction machines, the shortcoming of WIFI may limit the usage of this technology in some cases. Alternatively, the fifth-generation mobile networks (5G) have shown great potential to solve the problems. Thus, as the worlds first academic paper investigating 5G and construction machines cooperation, we demonstrated the scenarios where 5G can have a significant effect on the construction machines industry. Also, based on the simulation we made in $ns-3$, we compared the performance of 4G and 5G for the most relevant construction machines scenarios. Last but not least, we showed the feasibility of remote-control and self-working construction machines with the help of 5G.



rate research

Read More

The current optimization approaches of construction machinery are mainly based on internal sensors. However, the decision of a reasonable strategy is not only determined by its intrinsic signals, but also very strongly by environmental information, especially the terrain. Due to the dynamically changing of the construction site and the consequent absence of a high definition map, the Simultaneous Localization and Mapping (SLAM) offering the terrain information for construction machines is still challenging. Current SLAM technologies proposed for mobile machines are strongly dependent on costly or computationally expensive sensors, such as RTK GPS and cameras, so that commercial use is rare. In this study, we proposed an affordable SLAM method to create a multi-layer gird map for the construction site so that the machine can have the environmental information and be optimized accordingly. Concretely, after the machine passes by, we can get the local information and record it. Combining with positioning technology, we then create a map of the interesting places of the construction site. As a result of our research gathered from Gazebo, we showed that a suitable layout is the combination of 1 IMU and 2 differential GPS antennas using the unscented Kalman filter, which keeps the average distance error lower than 2m and the mapping error lower than 1.3% in the harsh environment. As an outlook, our SLAM technology provides the cornerstone to activate many efficiency improvement approaches.
Age of Information (AoI) has gained importance as a Key Performance Indicator (KPI) for characterizing the freshness of information in information-update systems and time-critical applications. Recent theoretical research on the topic has generated significant understanding of how various algorithms perform in terms of this metric on various system models and networking scenarios. In this paper, by the help of the theoretical results, we analyzed the AoI behavior on real-life networks, using our two test-beds, addressing IoT networks and regular computers. Excessive number of AoI measurements are provided for variations of transport protocols such as TCP, UDP and web-socket, on wired and wireless links. Practical issues such as synchronization and selection of hardware along with transport protocol, and their effects on AoI are discussed. The results provide insight toward application and transport layer mechanisms for optimizing AoI in real-life networks.
Currently, we have witnessed a myriad of solutions that benefit from programmable hardware. The 5G Core (5GC) can and should also benefit from such paradigm to offload certain functions to the dataplane. In this work, we designed and implemented a P4-based solution for traffic identification and chaining using the Netronome Agilo SmartNIC. The solution here presented is deployed in-between the RAN and UPF (User Plane Function) so that traffic coming from the RAN is identified and chained using SRv6 based on different rules defined by the control plane. The traffic identification and the construction of the SRv6 list of segments are done entirely in the SmartNIC. A minimalist Proof-of-Concept (PoC) was deployed and evaluated to show that this function is perfectly capable to build service function chainings in a transparent and efficient way.
It is widely acknowledged that the forthcoming 5G architecture will be highly heterogeneous and deployed with a high degree of density. These changes over the current 4G bring many challenges on how to achieve an efficient operation from the network management perspective. In this article, we introduce a revolutionary vision of the future 5G wireless networks, in which the network is no longer limited by hardware or even software. Specifically, by the idea of virtualizing the wireless networks, which has recently gained increasing attention, we introduce the Everything-as-a-Service (XaaS) taxonomy to light the way towards designing the service-oriented wireless networks. The concepts, challenges along with the research opportunities for realizing XaaS in wireless networks are overviewed and discussed.
Motivated by the growing popularity of smart TVs, we present a large-scale measurement study of smart TVs by collecting and analyzing their network traffic from two different vantage points. First, we analyze aggregate network traffic of smart TVs in-the-wild, collected from residential gateways of tens of homes and several different smart TV platforms, including Apple, Samsung, Roku, and Chromecast. In addition to accessing video streaming and cloud services, we find that smart TVs frequently connect to well-known as well as platform-specific advertising and tracking services (ATS). Second, we instrument Roku and Amazon Fire TV, two popular smart TV platforms, by setting up a controlled testbed to systematically exercise the top-1000 apps on each platform, and analyze their network traffic at the granularity of the individual apps. We again find that smart TV apps connect to a wide range of ATS, and that the key players of the ATS ecosystems of the two platforms are different from each other and from that of the mobile platform. Third, we evaluate the (in)effectiveness of state-of-the-art DNS-based blocklists in filtering advertising and tracking traffic for smart TVs. We find that personally identifiable information (PII) is exfiltrated to platform-related Internet endpoints and third parties, and that blocklists are generally better at preventing exposure of PII to third parties than to platform-related endpoints. Our work demonstrates the segmentation of the smart TV ATS ecosystem across platforms and its differences from the mobile ATS ecosystem, thus motivating the need for designing privacy-enhancing tools specifically for each smart TV platform.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا