No Arabic abstract
In this paper, we study the task of selecting the optimal response given a user and system utterance history in retrieval-based multi-turn dialog systems. Recently, pre-trained language models (e.g., BERT, RoBERTa, and ELECTRA) showed significant improvements in various natural language processing tasks. This and similar response selection tasks can also be solved using such language models by formulating the tasks as dialog--response binary classification tasks. Although existing works using this approach successfully obtained state-of-the-art results, we observe that language models trained in this manner tend to make predictions based on the relatedness of history and candidates, ignoring the sequential nature of multi-turn dialog systems. This suggests that the response selection task alone is insufficient for learning temporal dependencies between utterances. To this end, we propose utterance manipulation strategies (UMS) to address this problem. Specifically, UMS consist of several strategies (i.e., insertion, deletion, and search), which aid the response selection model towards maintaining dialog coherence. Further, UMS are self-supervised methods that do not require additional annotation and thus can be easily incorporated into existing approaches. Extensive evaluation across multiple languages and models shows that UMS are highly effective in teaching dialog consistency, which leads to models pushing the state-of-the-art with significant margins on multiple public benchmark datasets.
This paper proposes an utterance-to-utterance interactive matching network (U2U-IMN) for multi-turn response selection in retrieval-based chatbots. Different from previous methods following context-to-response matching or utterance-to-response matching frameworks, this model treats both contexts and responses as sequences of utterances when calculating the matching degrees between them. For a context-response pair, the U2U-IMN model first encodes each utterance separately using recurrent and self-attention layers. Then, a global and bidirectional interaction between the context and the response is conducted using the attention mechanism to collect the matching information between them. The distances between context and response utterances are employed as a prior component when calculating the attention weights. Finally, sentence-level aggregation and context-response-level aggregation are executed in turn to obtain the feature vector for matching degree prediction. Experiments on four public datasets showed that our proposed method outperformed baseline methods on all metrics, achieving a new state-of-the-art performance and demonstrating compatibility across domains for multi-turn response selection.
We investigate response selection for multi-turn conversation in retrieval-based chatbots. Existing studies pay more attention to the matching between utterances and responses by calculating the matching score based on learned features, leading to insufficient model reasoning ability. In this paper, we propose a graph-reasoning network (GRN) to address the problem. GRN first conducts pre-training based on ALBERT using next utterance prediction and utterance order prediction tasks specifically devised for response selection. These two customized pre-training tasks can endow our model with the ability of capturing semantical and chronological dependency between utterances. We then fine-tune the model on an integrated network with sequence reasoning and graph reasoning structures. The sequence reasoning module conducts inference based on the highly summarized context vector of utterance-response pairs from the global perspective. The graph reasoning module conducts the reasoning on the utterance-level graph neural network from the local perspective. Experiments on two conversational reasoning datasets show that our model can dramatically outperform the strong baseline methods and can achieve performance which is close to human-level.
In this paper, we study the problem of employing pre-trained language models for multi-turn response selection in retrieval-based chatbots. A new model, named Speaker-Aware BERT (SA-BERT), is proposed in order to make the model aware of the speaker change information, which is an important and intrinsic property of multi-turn dialogues. Furthermore, a speaker-aware disentanglement strategy is proposed to tackle the entangled dialogues. This strategy selects a small number of most important utterances as the filtered context according to the speakers information in them. Finally, domain adaptation is performed to incorporate the in-domain knowledge into pre-trained language models. Experiments on five public datasets show that our proposed model outperforms the present models on all metrics by large margins and achieves new state-of-the-art performances for multi-turn response selection.
Recently, open domain multi-turn chatbots have attracted much interest from lots of researchers in both academia and industry. The dominant retrieval-based methods use context-response matching mechanisms for multi-turn response selection. Specifically, the state-of-the-art methods perform the context-response matching by word or segment similarity. However, these models lack a full exploitation of the sentence-level semantic information, and make simple mistakes that humans can easily avoid. In this work, we propose a matching network, called sequential sentence matching network (S2M), to use the sentence-level semantic information to address the problem. Firstly and most importantly, we find that by using the sentence-level semantic information, the network successfully addresses the problem and gets a significant improvement on matching, resulting in a state-of-the-art performance. Furthermore, we integrate the sentence matching we introduced here and the usual word similarity matching reported in the current literature, to match at different semantic levels. Experiments on three public data sets show that such integration further improves the model performance.
We study learning of a matching model for response selection in retrieval-based dialogue systems. The problem is equally important with designing the architecture of a model, but is less explored in existing literature. To learn a robust matching model from noisy training data, we propose a general co-teaching framework with three specific teaching strategies that cover both teaching with loss functions and teaching with data curriculum. Under the framework, we simultaneously learn two matching models with independent training sets. In each iteration, one model transfers the knowledge learned from its training set to the other model, and at the same time receives the guide from the other model on how to overcome noise in training. Through being both a teacher and a student, the two models learn from each other and get improved together. Evaluation results on two public data sets indicate that the proposed learning approach can generally and significantly improve the performance of existing matching models.