Do you want to publish a course? Click here

Scalar Coupling Constant Prediction Using Graph Embedding Local Attention Encoder

61   0   0.0 ( 0 )
 Added by Caiqing Jian
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Scalar coupling constant (SCC) plays a key role in the analysis of three-dimensional structure of organic matter, however, the traditional SCC prediction using quantum mechanical calculations is very time-consuming. To calculate SCC efficiently and accurately, we proposed a graph embedding local self-attention encoder (GELAE) model, in which, a novel invariant structure representation of the coupling system in terms of bond length, bond angle and dihedral angle was presented firstly, and then a local self-attention module embedded with the adjacent matrix of a graph was designed to extract effectively the features of coupling systems, finally, with a modified classification loss function, the SCC was predicted. To validate the superiority of the proposed method, we conducted a series of comparison experiments using different structure representations, different attention modules, and different losses. The experimental results demonstrate that, compared to the traditional chemical bond structure representations, the rotation and translation invariant structure representations proposed in this work can improve the SCC prediction accuracy; with the graph embedded local self-attention, the mean absolute error (MAE) of the prediction model in the validation set decreases from 0.1603 Hz to 0.1067 Hz; using the classification based loss function instead of the scaled regression loss, the MAE of the predicted SCC can be decreased to 0.0963 HZ, which is close to the quantum chemistry standard on CHAMPS dataset.



rate research

Read More

The central challenge in automated synthesis planning is to be able to generate and predict outcomes of a diverse set of chemical reactions. In particular, in many cases, the most likely synthesis pathway cannot be applied due to additional constraints, which requires proposing alternative chemical reactions. With this in mind, we present Molecule Edit Graph Attention Network (MEGAN), an end-to-end encoder-decoder neural model. MEGAN is inspired by models that express a chemical reaction as a sequence of graph edits, akin to the arrow pushing formalism. We extend this model to retrosynthesis prediction (predicting substrates given the product of a chemical reaction) and scale it up to large datasets. We argue that representing the reaction as a sequence of edits enables MEGAN to efficiently explore the space of plausible chemical reactions, maintaining the flexibility of modeling the reaction in an end-to-end fashion, and achieving state-of-the-art accuracy in standard benchmarks. Code and trained models are made available online at https://github.com/molecule-one/megan.
Temporal set prediction is becoming increasingly important as many companies employ recommender systems in their online businesses, e.g., personalized purchase prediction of shopping baskets. While most previous techniques have focused on leveraging a users history, the study of combining it with others histories remains untapped potential. This paper proposes Global-Local Item Embedding (GLOIE) that learns to utilize the temporal properties of sets across whole users as well as within a user by coining the names as global and local information to distinguish the two temporal patterns. GLOIE uses Variational Autoencoder (VAE) and dynamic graph-based model to capture global and local information and then applies attention to integrate resulting item embeddings. Additionally, we propose to use Tweedie output for the decoder of VAE as it can easily model zero-inflated and long-tailed distribution, which is more suitable for several real-world data distributions than Gaussian or multinomial counterparts. When evaluated on three public benchmarks, our algorithm consistently outperforms previous state-of-the-art methods in most ranking metrics.
89 - Anees Kazi 2018
Multi-modal data comprising imaging (MRI, fMRI, PET, etc.) and non-imaging (clinical test, demographics, etc.) data can be collected together and used for disease prediction. Such diverse data gives complementary information about the patients condition to make an informed diagnosis. A model capable of leveraging the individuality of each multi-modal data is required for better disease prediction. We propose a graph convolution based deep model which takes into account the distinctiveness of each element of the multi-modal data. We incorporate a novel self-attention layer, which weights every element of the demographic data by exploring its relation to the underlying disease. We demonstrate the superiority of our developed technique in terms of computational speed and performance when compared to state-of-the-art methods. Our method outperforms other methods with a significant margin.
Many real-world problems can be formalized as predicting links in a partially observed network. Examples include Facebook friendship suggestions, consumer-product recommendations, and the identification of hidden interactions between actors in a crime network. Several link prediction algorithms, notably those recently introduced using network embedding, are capable of doing this by just relying on the observed part of the network. Often, the link status of a node pair can be queried, which can be used as additional information by the link prediction algorithm. Unfortunately, such queries can be expensive or time-consuming, mandating the careful consideration of which node pairs to query. In this paper we estimate the improvement in link prediction accuracy after querying any particular node pair, to use in an active learning setup. Specifically, we propose ALPINE (Active Link Prediction usIng Network Embedding), the first method to achieve this for link prediction based on network embedding. To this end, we generalized the notion of V-optimality from experimental design to this setting, as well as more basic active learning heuristics originally developed in standard classification settings. Empirical results on real data show that ALPINE is scalable, and boosts link prediction accuracy with far fewer queries.
Site-occupation embedding theory (SOET) is an alternative formulation of density-functional theory (DFT) for model Hamiltonians where the fully-interacting Hubbard problem is mapped, in principle exactly, onto an impurity-interacting (rather than a non-interacting) one. It provides a rigorous framework for combining wavefunction (or Green function) based methods with DFT. In this work, exact expressions for the per-site energy and double occupation of the uniform Hubbard model are derived in the context of SOET. As readily seen from these derivations, the so-called bath contribution to the per-site correlation energy is, in addition to the latter, the key density functional quantity to model in SOET. Various approximations based on Bethe ansatz and perturbative solutions to the Hubbard and single impurity Anderson models are constructed and tested on a one-dimensional ring. The self-consistent calculation of the embedded impurity wavefunction has been performed with the density matrix renormalization group method. It has been shown that promising results are obtained in specific regimes of correlation and density. Possible further developments have been proposed in order to provide reliable embedding functionals and potentials.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا