No Arabic abstract
A key feature of the many-body localized phase is the breaking of ergodicity and consequently the emergence of local memory; revealed as the local preservation of information over time. As memory is necessarily a time dependent concept, it has been partially captured by a few extant studies of dynamical quantities. However, these quantities are neither optimal, nor democratic with respect to input state; and as such a fundamental and complete information theoretic understanding of local memory in the context of many-body localization remains elusive. We introduce the dynamical Holevo quantity as the true quantifier of local memory, outlining its advantages over other quantities such as the imbalance or entanglement entropy. We find clear scaling behavior in its steady-state across the many-body localization transition, and determine a family of two-parameter scaling ansatze which captures this behavior. We perform a comprehensive finite size scaling analysis of this dynamical quantity extracting the transition point and scaling exponents.
As strength of disorder enhances beyond a threshold value in many-body systems, a fundamental transformation happens through which the entire spectrum localizes, a phenomenon known as many-body localization. This has profound implications as it breaks down fundamental principles of statistical mechanics, such as thermalization and ergodicity. Due to the complexity of the problem, the investigation of the many-body localization transition has remained a big challenge. The experimental exploration of the transition point is even more challenging as most of the proposed quantities for studying such effect are practically infeasible. Here, we experimentally implement a scalable protocol for detecting the many-body localization transition point, using the dynamics of a $N=12$ superconducting qubit array. We show that the sensitivity of the dynamics to random samples becomes maximum at the transition point which leaves its fingerprints in all spatial scales. By exploiting three quantities, each with different spatial resolution, we identify the transition point with excellent match between simulation and experiment. In addition, one can detect the evidence of mobility edge through slight variation of the transition point as the initial state varies. The protocol is easily scalable and can be performed across various physical platforms.
Chains of superconducting circuit devices provide a natural platform for studies of synthetic bosonic quantum matter. Motivated by the recent experimental progress in realizing disordered and interacting chains of superconducting transmon devices, we study the bosonic many-body localization phase transition using the methods of exact diagonalization as well as matrix product state dynamics. We estimate the location of transition separating the ergodic and the many-body localized phases as a function of the disorder strength and the many-body on-site interaction strength. The main difference between the bosonic model realized by superconducting circuits and similar fermionic model is that the effect of the on-site interaction is stronger due to the possibility of multiple excitations occupying the same site. The phase transition is found to be robust upon including longer-range hopping and interaction terms present in the experiments. Furthermore, we calculate experimentally relevant local observables and show that their temporal fluctuations can be used to distinguish between the dynamics of Anderson insulator, many-body localization, and delocalized phases. While we consider unitary dynamics, neglecting the effects of dissipation, decoherence and measurement back action, the timescales on which the dynamics is unitary are sufficient for observation of characteristic dynamics in the many-body localized phase. Moreover, the experimentally available disorder strength and interactions allow for tuning the many-body localization phase transition, thus making the arrays of superconducting circuit devices a promising platform for exploring localization physics and phase transition.
One fundamental assumption in statistical physics is that generic closed quantum many-body systems thermalize under their own dynamics. Recently, the emergence of many-body localized systems has questioned this concept, challenging our understanding of the connection between statistical physics and quantum mechanics. Here we report on the observation of a many-body localization transition between thermal and localized phases for bosons in a two-dimensional disordered optical lattice. With our single site resolved measurements we track the relaxation dynamics of an initially prepared out-of-equilibrium density pattern and find strong evidence for a diverging length scale when approaching the localization transition. Our experiments mark the first demonstration and in-depth characterization of many-body localization in a regime not accessible with state-of-the-art simulations on classical computers.
We compare accuracy of two prime time evolution algorithms involving Matrix Product States - tDMRG (time-dependent density matrix renormalization group) and TDVP (time-dependent variational principle). The latter is supposed to be superior within a limited and fixed auxiliary space dimension. Surprisingly, we find that the performance of algorithms depends on the model considered. In particular, many-body localized systems as well as the crossover regions between localized and delocalized phases are better described by tDMRG, contrary to the delocalized regime where TDVP indeed outperforms tDMRG in terms of accuracy and reliability. As an example, we study many-body localization transition in a large size Heisenberg chain. We discuss drawbacks of previous estimates [Phys. Rev. B 98, 174202 (2018)] of the critical disorder strength for large systems.
Many-body localization (MBL) describes a quantum phase where an isolated interacting system subject to sufficient disorder displays non-ergodic behavior, evading thermal equilibrium that occurs under its own dynamics. Previously, the thermalization-MBL transition has been largely characterized with the growth of disorder. Here, we explore a new axis, reporting on an energy resolved MBL transition using a 19-qubit programmable superconducting processor, which enables precise control and flexibility of both disorder strength and initial state preparations. We observe that the onset of localization occurs at different disorder strengths, with distinguishable energy scales, by measuring time-evolved observables and many-body wavefunctions related quantities. Our results open avenues for the experimental exploration of many-body mobility edges in MBL systems, whose existence is widely debated due to system size finiteness, and where exact simulations in classical computers become unfeasible.