No Arabic abstract
Topological magnets are a new family of quantum materials providing great potential to realize emergent phenomena, such as quantum anomalous Hall effect and axion-insulator state. Here we present our discovery that stoichiometric ferromagnet MnBi8Te13 with natural heterostructure MnBi2Te4-(Bi2Te3)3 is an unprecedented half-magnetic topological insulator, with the magnetization existing at the MnBi2Te4 surface but not at the opposite surface terminated by triple Bi2Te3 layers. Our angle-resolved photoemission spectroscopy measurements unveil a massive Dirac gap at the MnBi2Te4 surface, and gapless Dirac cone on the other side. Remarkably, the Dirac gap (~28 meV) at MnBi2Te4 surface decreases monotonically with increasing temperature and closes right at the Curie temperature, thereby representing the first smoking-gun spectroscopic evidence of magnetization-induced topological surface gap among all known magnetic topological materials. We further demonstrate theoretically that the half-magnetic topological insulator is desirable to realize the half-quantized surface anomalous Hall effect, which serves as a direct proof of the general concept of axion electrodynamics in condensed matter systems.
The magnetic proximity effect is a fundamental feature of heterostructures composed of layers of topological insulators and magnetic materials since it underlies many potential applications in devices with novel quantum functionality. Within density functional theory we study magnetic proximity effect at the 3D topological insulator/magnetic insulator (TI/MI) interface in Bi$_2$Se$_3$/MnSe(111) system as an example. We demonstrate that a gapped ordinary bound state which spectrum depends on the interface potential arises in the immediate region of the interface. The gapped topological Dirac state also arises in the system owing to relocation to deeper atomic layers of topological insulator. The gap in the Dirac cone is originated from an overlapping of the topological and ordinary interfacial states. This result being also corroborated by the analytic model, is a key aspect of the magnetic proximity effect mechanism in the TI/MI structures.
A topological insulator (TI) interfaced with a magnetic insulator (MI) may host an anomalous Hall effect (AHE), a quantum AHE, and a topological Hall effect (THE). Recent studies, however, suggest that coexisting magnetic phases in TI/MI heterostructures may result in an AHE-associated response that resembles a THE but in fact is not. This article reports a genuine THE in a TI/MI structure that has only one magnetic phase. The structure shows a THE in the temperature range of T=2-3 K and an AHE at T=80-300 K. Over T=3-80 K, the two effects coexist but show opposite temperature dependencies. Control measurements, calculations, and simulations together suggest that the observed THE originates from skyrmions, rather than the coexistence of two AHE responses. The skyrmions are formed due to an interfacial DMI interaction. The DMI strength estimated is substantially higher than that in heavy metal-based systems.
EuSn2As2 with layered rhombohedral crystal structure is proposed to be a candidate of intrinsic antiferromagnetic (AFM) topological insulator. Here, we have investigated systematic magnetoresistance (MR) and magnetization measurements on the high quality EuSn2As2 single crystal with the magnetic field both parallel and perpendicular to (00l) plane. Both the kink of magnetic susceptibility and longitudinal resistivity reveal that EuSn2An2 undergoes an AFM transition at TN = 21 K. At T = 2 K, the magnetization exhibits two successive plateaus of ~ 5.6 {mu}B/Eu and ~ 6.6 {mu}B/Eu at the corresponding critical magnetic fields. Combined with the negative longitudinal MR and abnormal Hall resistance, we demonstrate that EuSn2An2 undergoes complicated magnetic transitions from an AFM state to a canted ferromagnetic (FM) state at Hc and then to a polarized FM state at Hs as the magnetic field increase.
Recently, MnBi2Te4 has been discovered as the first intrinsic antiferromagnetic topological insulator (AFM TI), and will become a promising material to discover exotic topological quantum phenomena. In this work, we have realized the successful synthesis of high-quality MnBi2Te4 single crystals by solid-state reactions. The as-grown MnBi2Te4 single crystal exhibits a van der Waals layered structure, which is composed of septuple Te-Bi-Te-Mn-Te-Bi-Te sequences as determined by powder X-ray diffraction (PXRD) and high-resolution high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM). The magnetic order below 25 K as a consequence of A-type antiferromagnetic interaction between Mn layers in the MnBi2Te4 crystal suggests the unique interplay between antiferromagnetism and topological quantum states. The transport measurements of MnBi2Te4 single crystals further confirm its magnetic transition. Moreover, the unstable surface of MnBi2Te4, which is found to be easily oxidized in air, deserves attention for onging research on few-layer samples. This study on the first AFM TI of MnBi2Te4 will guide the future research on other potential candidates in the MBixTey family (M = Ni, V, Ti, etc.).
We propose a universal practical approach to realize magnetic second-order topological insulator (SOTI) materials, based on properly breaking the time reversal symmetry in conventional (first-order) topological insulators. The approach works for both three dimensions (3D) and two dimensions (2D), and is particularly suitable for 2D, where it can be achieved by coupling a quantum spin Hall insulator with a magnetic substrate. Using first-principles calculations, we predict bismuthene on EuO(111) surface as the first realistic system for a 2D magnetic SOTI. We explicitly demonstrate the existence of the protected corner states. Benefited from the large spin-orbit coupling and sizable magnetic proximity effect, these corner states are located in a boundary gap $sim 83$ meV, hence can be readily probed in experiment. By controlling the magnetic phase transition, a topological phase transition between a first-order TI and a SOTI can be simultaneously achieved in the system. The effect of symmetry breaking, the connection with filling anomaly, and the experimental detection are discussed.