No Arabic abstract
We propose a phenomenological non-equilibrium framework for modelling the evolution of cities which describes the intra-urban resettlement as an irreversible diffusive process. We validate this framework using the actual migration data for the Australian capital cities. With respect to the residential relocation, the population is shown to be composed of two distinct groups, exhibiting different relocation frequencies. In the context of the developed framework, these groups can be interpreted as two components of a binary mixture, each with its own diffusive relaxation time. Using this approach, we obtain long-term predictions of the cities spatial structure, which defines their equilibrium population distribution.
During the last decades, the study of cities has been transformed by new approaches combining engineering and complexity sciences. Network theory is playing a central role, facilitating the quantitative analysis of crucial urban dynamics, such as mobility, city growth or urban planning. In this work, we focus on the spatial aspects of congestion. Analyzing a large amount of real city networks, we show that the location of the onset of congestion changes according to the considered urban area, defining, in turn, a set of congestion regimes separated by abrupt transitions. To help unveiling these spatial dependencies of congestion (in terms of network betweenness analysis), we introduce a family of planar road network models composed of a dense urban center connected to an arboreal periphery. These models, coined as GT and DT-MST models, allow us to analytically, numerically and experimentally describe how and why congestion emerges in particular geographical areas of monocentric cities and, subsequently, to describe the congestion regimes and the factors that promote the appearance of their abrupt transitions. We show that the fundamental ingredient behind the observed abrupt transitions is the spatial separation between the urban center and the periphery, and the number of separate areas that form the periphery. Elaborating on the implications of our results, we show that they may have an influence on the design and optimization of road networks regarding urban growth and the management of daily traffic dynamics.
The quantitative study of traffic dynamics is crucial to ensure the efficiency of urban transportation networks. The current work investigates the spatial properties of congestion, that is, we aim to characterize the city areas where traffic bottlenecks occur. The analysis of a large amount of real road networks in previous works showed that congestion points experience spatial abrupt transitions, namely they shift away from the city center as larger urban areas are incorporated. The fundamental ingredient behind this effect is the entanglement of central and arterial roads, embedded in separated geographical regions. In this paper we extend the analysis of the conditions yielding abrupt transitions of congestion location. First, we look into the more realistic situation in which arterial and central roads, rather than lying on sharply separated regions, present spatial overlap. It results that this affects the position of bottlenecks and introduces new possible congestion areas. Secondly, we pay particular attention to the role played by the edge distribution, proving that it allows to smooth the transitions profile, and so to control the congestion displacement. Finally, we show that the aforementioned phenomenology may be recovered also as a consequence of a discontinuity in the nodes density, in a domain with uniform connectivity. Our results provide useful insights for the design and optimization of urban road networks, and the management of the daily traffic.
Transportation networks serve as windows into the complex world of urban systems. By properly characterizing a road network, we can therefore better understand its encompassing urban system. This study offers a geometrical approach towards capturing inherent properties of urban road networks. It offers a robust and efficient methodology towards defining and extracting three relevant indicators of road networks: area, line, and point thresholds, through measures of their grid equivalents. By applying the methodology to 50 U.S. urban systems, we successfully observe differences between eastern versus western, coastal versus inland, and old versus young, cities. Moreover, we show that many socio-economic characteristics as well as travel patterns within urban systems are directly correlated with their corresponding area, line, and point thresholds.
We examine skyrmions driven periodically over random quenched disorder and show that there is a transition from reversible motion to a state in which the skyrmion trajectories are chaotic or irreversible. We find that the characteristic time required for the system to organize into a steady reversible or irreversible state exhibits a power law divergence near a critical ac drive period, with the same exponent as that observed for reversible to irreversible transitions in periodically sheared colloidal systems, suggesting that the transition can be described as an absorbing phase transition in the directed percolation universality class. We compare our results to the behavior of an overdamped system and show that the Magnus term enhances the irreversible behavior by increasing the number of dynamically accessible orbits. We discuss the implications of this work for skyrmion applications involving the long time repeatable dynamics of dense skyrmion arrays.
Improved mobility not only contributes to more intensive human activities but also facilitates the spread of communicable disease, thus constituting a major threat to billions of urban commuters. In this study, we present a multi-city investigation of communicable diseases percolating among metro travelers. We use smart card data from three megacities in China to construct individual-level contact networks, based on which the spread of disease is modeled and studied. We observe that, though differing in urban forms, network layouts, and mobility patterns, the metro systems of the three cities share similar contact network structures. This motivates us to develop a universal generation model that captures the distributions of the number of contacts as well as the contact duration among individual travelers. This model explains how the structural properties of the metro contact network are associated with the risk level of communicable diseases. Our results highlight the vulnerability of urban mass transit systems during disease outbreaks and suggest important planning and operation strategies for mitigating the risk of communicable diseases.