Do you want to publish a course? Click here

10.4m GTC observations of the nearby VHE-detected GRB 190829A/SN 2019oyw

79   0   0.0 ( 0 )
 Added by Youdong Hu
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Aims. GRB 190829A (z = 0.0785), detected by Fermi and Swift with two emission episodes separated by a quiescent gap of ~40 s, was also observed by the H.E.S.S. telescopes at Very-High Energy (VHE). We present the 10.4m GTC observations of the afterglow of GRB 190829A and underlying supernova and compare it against a similar GRB 180728A and discuss the implications on underlying physical mechanisms producing these two GRBs. Methods. We present multi-band photometric data along with spectroscopic follow-up observations taken with the 10.4m GTC telescope. Together with the data from the prompt emission, the 10.4m GTC data are used to understand the emission mechanisms and possible progenitor. Results. A detailed analysis of multi-band data of the afterglow demands cooling frequency to pass between the optical and X-ray bands at early epochs and dominant with underlying SN 2019oyw later on. Conclusions. Prompt emission temporal properties of GRB 190829A and GRB 180728A are similar, however the two pulses seem different in the spectral domain. We found that the supernova (SN) 2019oyw associated with GRB 190829A, powered by Ni decay, is of Type Ic-BL and that the spectroscopic/photometric properties of this SN is consistent with those observed for SN 1998bw but evolved comparatively early.



rate research

Read More

We present the results of a detailed investigation of the prompt and afterglow emission in the HESS detected GRB 190829A. Swift and Fermi observations of the prompt phase of this GRB reveal two isolated sub-bursts or episodes, separated by a quiescent phase. The energetic and the spectral properties of the first episode are in stark contrast to the second. The first episode, which has a higher spectral peak of $sim 120:text{keV}$ and a low isotropic energy $sim 10^{50}:text{erg}$ is an outlier to the Amati correlation and marginally satisfies the Yonetoku correlation. However, the energetically dominant second episode has lower peak energy and is consistent with the above correlations. We compared this GRB to other low luminosity GRBs (LLGRBs). Prompt emission of LLGRBs also indicates a relativistic shock breakout origin of the radiation. For GRB 190829A, some of the properties of a shock breakout origin are satisfied. However, the absence of an accompanying thermal component and energy above the shock breakout critical limit precludes a shock breakout origin. In the afterglow, an unusual long-lasting late time flare of duration $sim 10^4:text{s}$ is observed. We also analyzed the late-time fermi-LAT emission that encapsulates the H.E.S.S. detection. Some of the LAT photons are likely to be associated with the source. All the above observational facts suggest GRB 190829A is a peculiar low luminosity GRB that is not powered by a shock breakout, and with an unusual rebrightening due to a patchy emission or a refreshed shock during the afterglow. Furthermore, our results show that TeV energy photons seem common in both high luminosity GRBs and LLGRBs.
OCTOCAM is a multi-channel imager and spectrograph that has been proposed for the 10.4m GTC telescope. It will use dichroics to split the incoming light to produce simultaneous observations in 8 different bands, ranging from the ultraviolet to the near-infrared. The imaging mode will have a field of view of 2 x 2 in u, g, r, i, z, J, H and Ks bands, whereas the long-slit spectroscopic mode will cover the complete range from 4,000 to 23,000 {AA} with a resolution of 700 - 1,700 (depending on the arm and slit width). An additional mode, using an image slicer, will deliver a spectral resolution of over 3,000. As a further feature, it will use state of the art detectors to reach high readout speeds of the order of tens of milliseconds. In this way, OCTOCAM will be occupying a region of the time resolution - spectral resolution - spectral coverage diagram that is not covered by a single instrument in any other observatory, with an exceptional sensitivity.
The coincident detection of GW170817 in gravitational waves and electromagnetic radiation spanning the radio to MeV gamma-ray bands provided the first direct evidence that short gamma-ray bursts (GRBs) can originate from binary neutron star (BNS) mergers. On the other hand, the properties of short GRBs in high-energy gamma rays are still poorly constrained, with only $sim$20 events detected in the GeV band, and none in the TeV band. GRB~160821B is one of the nearest short GRBs known at $z=0.162$. Recent analyses of the multiwavelength observational data of its afterglow emission revealed an optical-infrared kilonova component, characteristic of heavy-element nucleosynthesis in a BNS merger. Aiming to better clarify the nature of short GRBs, this burst was automatically followed up with the MAGIC telescopes, starting from 24 seconds after the burst trigger. Evidence of a gamma-ray signal is found above $sim$0.5 TeV at a significance of $sim3,sigma$ during observations that lasted until 4 hours after the burst. Assuming that the observed excess events correspond to gamma-ray emission from GRB 160821B, in conjunction with data at other wavelengths, we investigate its origin in the framework of GRB afterglow models. The simplest interpretation with one-zone models of synchrotron-self-Compton emission from the external forward shock has difficulty accounting for the putative TeV flux. Alternative scenarios are discussed where the TeV emission can be relatively enhanced. The role of future GeV-TeV observations of short GRBs in advancing our understanding of BNS mergers and related topics is briefly addressed.
We present optical and near-infrared (NIR) photometry for three gamma-ray burst supernovae (GRB-SNe): GRB 120729A, GRB 130215A / SN 2013ez and GRB 130831A / SN 2013fu. In the case of GRB 130215A / SN 2013ez, we also present optical spectroscopy at t-t0=16.1 d, which covers rest-frame 3000-6250 Angstroms. Based on Fe II (5169) and Si (II) (6355), our spectrum indicates an unusually low expansion velocity of 4000-6350 km/s, the lowest ever measured for a GRB-SN. Additionally, we determined the brightness and shape of each accompanying SN relative to a template supernova (SN 1998bw), which were used to estimate the amount of nickel produced via nucleosynthesis during each explosion. We find that our derived nickel masses are typical of other GRB-SNe, and greater than those of SNe Ibc that are not associated with GRBs. For GRB 130831A / SN 2013fu, we use our well-sampled R-band light curve (LC) to estimate the amount of ejecta mass and the kinetic energy of the SN, finding that these too are similar to other GRB-SNe. For GRB 130215A, we take advantage of contemporaneous optical/NIR observations to construct an optical/NIR bolometric LC of the afterglow. We fit the bolometric LC with the millisecond magnetar model of Zhang & Meszaros (2001), which considers dipole radiation as a source of energy injection to the forward shock powering the optical/NIR afterglow. Using this model we derive an initial spin period of P=12 ms and a magnetic field of B=1.1 x 10^15 G, which are commensurate with those found for proposed magnetar central engines of other long-duration GRBs.
We present and discuss optical diagnostics of the low redshift (z<0.2) galaxies that are known to have hosted supernovae associated with gamma-ray bursts (GRBs). The three galaxies are all actively starforming sub-luminous (L<L*) galaxies with relatively low metallicities (Z<Zsun). We find no evidence for substantial internal extinction within any of the galaxies. We derive star formation rates (SFR) based on H-alpha luminosities, as well as specific star formation rates (SFFR, star formation rate per unit luminosity). For GRB 980425 (SN 1998bw) we use photometry of the supernova environment to estimate the mass of the progentitor to > 30 Msun. These three host galaxies have global properties (luminosities, SFR, SSFR, metallicity, colour, reddening) that resemble those of more distant GRB host galaxies. We also compare the host galaxies with a sample of Blue Compact Galaxies (BCGs) in the local universe, and show that these samples have similar properties.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا