Do you want to publish a course? Click here

On the nature of nearby GRB/SN host galaxies

75   0   0.0 ( 0 )
 Added by Jesper Sollerman
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present and discuss optical diagnostics of the low redshift (z<0.2) galaxies that are known to have hosted supernovae associated with gamma-ray bursts (GRBs). The three galaxies are all actively starforming sub-luminous (L<L*) galaxies with relatively low metallicities (Z<Zsun). We find no evidence for substantial internal extinction within any of the galaxies. We derive star formation rates (SFR) based on H-alpha luminosities, as well as specific star formation rates (SFFR, star formation rate per unit luminosity). For GRB 980425 (SN 1998bw) we use photometry of the supernova environment to estimate the mass of the progentitor to > 30 Msun. These three host galaxies have global properties (luminosities, SFR, SSFR, metallicity, colour, reddening) that resemble those of more distant GRB host galaxies. We also compare the host galaxies with a sample of Blue Compact Galaxies (BCGs) in the local universe, and show that these samples have similar properties.



rate research

Read More

We try to identify the nature of high redshift long Gamma-Ray Bursts (LGRBs) host galaxies by comparing the observed abundance ratios in the interstellar medium with detailed chemical evolution models accounting for the presence of dust. We compared measured abundance data from LGRB afterglow spectra to abundance patterns as predicted by our models for different galaxy types. We analysed in particular [X/Fe] abundance ratios (where X is C, N, O, Mg, Si, S, Ni, Zn) as functions of [Fe/H]. Different galaxies (irregulars, spirals, ellipticals) are, in fact, characterised by different star formation histories, which produce different [X/Fe] ratios (time-delay model). This allows us to identify the morphology of the hosts and to infer their age (i.e. the time elapsed from the beginning of star formation) at the time of the GRB events, as well as other important parameters. Relative to previous works, we use newer models in which we adopt updated stellar yields and prescriptions for dust production, accretion and destruction. We have considered a sample of seven LGRB host galaxies. Our results have suggested that two of them (GRB 050820, GRB 120815A) are ellipticals, two (GRB 081008, GRB 161023A) are spirals and three (GRB 050730, GRB 090926A, GRB 120327A) are irregulars. We also found that in some cases changing the initial mass function can give better agreement with the observed data. The calculated ages of the host galaxies span from the order of 10 Myr to little more than 1 Gyr.
We identify the nature of high redshift long Gamma-Ray Bursts (LGRBs) host galaxies by comparing the observed abundance ratios in the interstellar medium with detailed chemical evolution models accounting for the presence of dust. We compare abundance data from long Gamma-Ray Bursts afterglow spectra to abundance patterns as predicted by our models for different galaxy types. We analyse [X/Fe] abundance ratios (where X is C, N, O, Mg, Si, S, Ni, Zn) as functions of [Fe/H]. Different galaxies (irregulars, spirals, spheroids) are, in fact, characterised by different star formation histories, which produce different [X/Fe] vs. [Fe/H] relations (time-delay model). This allows us to identify the star formation history of the host galaxies and to infer their age (i.e. the time elapsed from the beginning of star formation) at the time of the GRB events. Unlike previous works, we use newer models in which we adopt updated stellar yields and prescriptions for dust production, accretion and destruction. We consider a sample of seven LGRB host galaxies. Our results suggest that two of them (GRB 050820, GRB 120815A) are star forming spheroids, two (GRB 081008, GRB 161023A) are spirals and three (GRB 090926A, GRB 050730, GRB 120327A) are irregulars. The inferred ages of the considered host galaxies span from 10 Myr to slightly more than 1 Gyr.
57 - S.G. Djorgovski 2001
Observations of GRB host galaxies and their environments in general can provide valuable clues about the nature of progenitors. Bursts are associated with faint, <R> ~ 25 mag, galaxies at cosmological redshifts, <z> ~ 1. The host galaxies span a range of luminosities and morphologies, and appear to be broadly typical for the normal, evolving, actively star-forming galaxy populations at comparable redshifts and magnitudes, but may have somewhat elevated SFR per unit luminosity. There are also spectroscopic hints of massive star formation, from the ratios of [Ne III] and [O II] lines. The observed, unobscured star formation rates are typically a few M_sun/yr, but a considerable fraction of the total star formation in the hosts may be obscured by dust. A census of detected optical afterglows provides a powerful new handle on the obscured fraction of star formation in the universe; the current results suggest that at most a half of the massive star formation was hidden by dust.
We study the dark nature of GRB 130528A through multi-wavelength observations and conclude that the main reason for the optical darkness is local extinction inside of the host galaxy. Automatic observations were performed at BOOTES-4/MET robotic telescope. We also triggered target of opportunity (ToO) observation at the OSN, IRAM PdBI and the GTC+OSIRIS. The host galaxy photometric observations in optical to near-infrared (nIR) wavelengths were achieved through large ground-based aperture telescopes, such as the 10.4m GTC, the 4.2m WHT, 6m BTA, and the 2m LT. Based on these observations, spectral energy distributions (SED) for the host galaxy and afterglow were constructed. Thanks to mm observations at PdBI, we confirm the presence of a mm source within the XRT error circle that faded over the course of our observations and identify the host galaxy. However, we do not find any credible optical source within early observations with BOOTES-4/MET and 1.5m OSN telescopes. Spectroscopic observation of this galaxy by GTC showed a single faint emission line that likely corresponds to [OII] 3727{AA} at a redshift of 1.250+/-0.001 implying a SFR(M_sun/yr) > 6.18 M_sun/yr without correcting for dust extinction. The probable extinction was revealed through analysis of the afterglow SED, resulting in a value of AV >= ~ 0.9 at the rest frame, this is comparable to extinction levels found among other dark GRBs. The SED of the host galaxy is explained well (chi2/d.o.f.=0.564) by a luminous (MB=-21.16), low-extinction (AV =0, rest frame), and aged (2.6 Gyr) stellar population. We can explain this apparent contradiction in global and line-of-sight extinction if the GRB birth place happened to lie in a local dense environment. In light of having relatively small specific SFR (SSFR) ~ 5.3 M_sun/yr (L/L_star)-1, this also could explain the age of the old stellar population of host galaxy.
We explore galaxy properties in general and properties of host galaxies of gamma-ray bursts (GRBs) in particular, using N-body/Eulerian hydrodynamic simulations and the stellar population synthesis model, Starburst99, to infer observable properties. We identify simulated galaxies that have optical star formation rate (SFR) and SFR-to-luminosity ratio similar to those observed in a well-defined sample of ten host galaxies. Each of the numerical counterparts are found in catalogs at the same redshifts as the observed hosts. The counterparts are found to be low-mass galaxies, with low mass-to-light ratio, recent epoch of formation, and high ratio between the SFR and the average of the SFR. When compared to the overall galaxy population, they have colors much bluer than the high-mass star-forming galaxy population. Although their SFRs span a range of values, the specific rates of the numerical counterparts are equal to or higher than the median values estimated at the different redshifts. We also emphasize the strong relationships between the specific star formation rate (SFR) and quantities known to reflect the star formation history of galaxies, i.e. color and mass-to-light ratio: At intermediate redshift, the faintest and bluest galaxies are also the objects with the highest specific rates. These results suggest that GRB host galaxies are likely to be drawn from the high specific SFR sub-population of galaxies, rather than the high SFR galaxy population. Finally, as indicated by our catalogs, in an extended sample, the majority of GRB host galaxies is expected to have specific SFRs higher than found in the magnitude-limited sample studied here.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا