No Arabic abstract
Feedback through energetic outflows has emerged as a key physical process responsible for transforming star-forming galaxies into the quiescent systems observed in the local universe. To explore this process, this paper focuses on a sample of massive and compact merger remnant galaxies hosting high-velocity gaseous outflows ($|v| gtrsim 10^{3}$ km s$^{-1}$), found at intermediate redshift ($z sim 0.6$). From their mid-infrared emission and compact morphologies, these galaxies are estimated to have exceptionally large star formation rate (SFR) surface densities ($Sigma_{SFR} sim 10^{3}$ $mathrm{M_{odot}}$ yr$^{-1}$ kpc$^{-2}$), approaching the Eddington limit for radiation pressure on dust grains. This suggests that star formation feedback may be driving the observed outflows. However, these SFR estimates suffer from significant uncertainties. We therefore sought an independent tracer of star formation to probe the compact starburst activity in these systems. In this paper, we present SFR estimates calculated using 1.5 GHz continuum Jansky Very Large Array observations for 19 of these galaxies. We also present updated infrared (IR) SFRs calculated from WISE survey data. We estimate SFRs from the IR to be larger than those from the radio for 16 out of 19 galaxies by a median factor of 2.5. We find that this deviation is maximized for the most compact galaxies hosting the youngest stellar populations, suggesting that compact starbursts deviate from the IR-radio correlation. We suggest that this deviation stems either from free-free absorption of synchrotron emission, a difference in the timescale over which each indicator traces star formation, or exceptionally hot IR-emitting dust in these ultra-dense galaxies.
We present results on the nature of extreme ejective feedback episodes and the physical conditions of a population of massive ($rm M_* sim 10^{11} M_{odot}$), compact starburst galaxies at z = 0.4-0.7. We use data from Keck/NIRSPEC, SDSS, Gemini/GMOS, MMT, and Magellan/MagE to measure rest-frame optical and near-IR spectra of 14 starburst galaxies with extremely high star formation rate surface densities (mean $rm Sigma_{SFR} sim 3000 ,M_{odot} yr^{-1} kpc^{-2}$) and powerful galactic outflows (maximum speeds v$_{98} sim$ 1000-3000 km s$^{-1}$). Our unique data set includes an ensemble of both emission [OII]$lambdalambda$3726,3729, H$beta$, [OIII]$lambdalambda$4959,5007, H$alpha$, [NII]$lambdalambda$6548,6583, and [SII]$lambdalambda$6716,6731) and absorption MgII$lambdalambda$2796,2803, and FeII$lambda$2586) lines that allow us to investigate the kinematics of the cool gas phase (T$sim$10$^4$ K) in the outflows. Employing a suite of line ratio diagnostic diagrams, we find that the central starbursts are characterized by high electron densities (median n$_e sim$ 530 cm$^{-3}$), high metallicity (solar or super-solar), and, on average, high ionization parameters. We show that the outflows are most likely driven by stellar feedback emerging from the extreme central starburst, rather than by an AGN. We also present multiple intriguing observational signatures suggesting that these galaxies may have substantial Lyman continuum (LyC) photon leakage, including weak [SII] nebular emission lines. Our results imply that these galaxies may be captured in a short-lived phase of extreme star formation and feedback where much of their gas is violently blown out by powerful outflows that open up channels for LyC photons to escape.
The central regions of galaxies show the presence of super massive black holes and/or very dense stellar clusters. Both objects seem to follow similar host-galaxy correlations, suggesting that they are members of the same family of Compact Massive Objects. We investigate here a huge data collection of Compact Massive Objects properties to correlate them with absolute magnitude, velocity dispersion and mass of their host galaxies.
We investigate the correlation between far-infrared (FIR) and radio luminosities in distant galaxies, a lynchpin of modern astronomy. We use data from the Balloon-borne Large Aperture Submillimetre Telescope (BLAST), Spitzer, the Large Apex BOlometer CamerA (LABOCA), the Very Large Array (VLA) and the Giant Metre-wave Radio Telescope (GMRT) in the Extended Chandra Deep Field South (ECDFS). For a catalogue of BLAST 250-micron-selected galaxies, we re-measure the 70--870-micron flux densities at the positions of their most likely 24-micron counterparts, which have a median [interquartile] redshift of 0.74 [0.25, 1.57]. From these, we determine the monochromatic flux density ratio, q_250 = log_10 (S_250micron / S_1400MHz), and the bolometric equivalent, q_IR. At z ~= 0.6, where our 250-micron filter probes rest-frame 160-micron emission, we find no evolution relative to q_160 for local galaxies. We also stack the FIR and submm images at the positions of 24-micron- and radio-selected galaxies. The difference between q_IR seen for 250-micron- and radio-selected galaxies suggests star formation provides most of the IR luminosity in ~< 100-uJy radio galaxies, but rather less for those in the mJy regime. For the 24-micron sample, the radio spectral index is constant across 0 < z < 3, but q_IR exhibits tentative evidence of a steady decline such that q_IR is proportional to (1+z)^(-0.15 +/- 0.03) - significant evolution, spanning the epoch of galaxy formation, with major implications for techniques that rely on the FIR/radio correlation. We compare with model predictions and speculate that we may be seeing the increase in radio activity that gives rise to the radio background.
We present optical spectroscopy and deep optical/near-IR photometry of 4 luminous metal-poor blue compact galaxies (BCGs) and two of their companions. With the aid of spectral evolutionary models (SEMs) and structural parameters derived from the surface photometry we discuss the properties of the central starbursts and the halo populations of the galaxies. Special attention is paid to the effects of dust, chemical inhomogeneities and contamination of nebular emission to the halo light. The optical/near-IR colour index profiles show a sharp distinction between the starburst and the host. The hosts have luminosity profiles characteristic of massive ellipticals and remarkably red colours, typical of a relatively {it metal-rich} stellar population of {it old age}. These properties are in conflict with the relatively low luminosities. The situation can best be explained if the hosts have an unusually large amount of dark matter that can hinder the outflow of metals from the system. The indicated difference in metallicity between the halo and the young starburst disproves the recurrent burst scenario and supports different origins of the two populations. We conclude that these BCGs are undergoing mergers between early type galaxies/thick disks and gas-rich galaxies or intergalactic HI clouds, in many respects reminiscent of a retarded formation of massive ellipticals.
In this paper we study a key phase in the formation of massive galaxies: the transition of star forming galaxies into massive (M_stars~10^11 Msun), compact (r_e~1 kpc) quiescent galaxies, which takes place from z~3 to z~1.5. We use HST grism redshifts and extensive photometry in all five 3D-HST/CANDELS fields, more than doubling the area used previously for such studies, and combine these data with Keck MOSFIRE and NIRSPEC spectroscopy. We first confirm that a population of massive, compact, star forming galaxies exists at z~2, using K-band spectroscopy of 25 of these objects at 2.0<z<2.5. They have a median NII/Halpha ratio of 0.6, are highly obscured with SFR(tot)/SFR(Halpha)~10, and have a large range of observed line widths. We infer from the kinematics and spatial distribution of Halpha that the galaxies have rotating disks of ionized gas that are a factor of ~2 more extended than the stellar distribution. By combining measurements of individual galaxies, we find that the kinematics are consistent with a nearly Keplerian fall-off from V_rot~500 km/s at 1 kpc to V_rot~250 km/s at 7 kpc, and that the total mass out to this radius is dominated by the dense stellar component. Next, we study the size and mass evolution of the progenitors of compact massive galaxies. Even though individual galaxies may have had complex histories with periods of compaction and mergers, we show that the population of progenitors likely followed a simple inside-out growth track in the size-mass plane of d(log r_e) ~ 0.3 d(log M_stars). This mode of growth gradually increases the stellar mass within a fixed physical radius, and galaxies quench when they reach a stellar density or velocity dispersion threshold. As shown in other studies, the mode of growth changes after quenching, as dry mergers take the galaxies on a relatively steep track in the size-mass plane.