No Arabic abstract
In this paper we propose a novel consensus protocol for discrete-time multi-agent systems (MAS), which solves the dynamic consensus problem on the max value, i.e., the dynamic max-consensus problem. In the dynamic max-consensus problem to each agent is fed a an exogenous reference signal, the objective of each agent is to estimate the instantaneous and time-varying value of the maximum among the signals fed to the network, by exploiting only local and anonymous interactions among the agents. The absolute and relative tracking error of the proposed distributed control protocol is theoretically characterized and is shown to be bounded and by tuning its parameters it is possible to trade-off convergence time for steady-state error. The dynamic Max-consensus algorithm is then applied to solve the distributed size estimation problem in a dynamic setting where the size of the network is time-varying during the execution of the estimation algorithm. Numerical simulations are provided to corroborate the theoretical analysis.
This paper studies an optimal consensus problem for a group of heterogeneous high-order agents with unknown control directions. Compared with existing consensus results, the consensus point is further required to an optimal solution to some distributed optimization problem. To solve this problem, we first augment each agent with an optimal signal generator to reproduce the global optimal point of the given distributed optimization problem, and then complete the global optimal consensus design by developing some adaptive tracking controllers for these augmented agents. Moreover, we present an extension when only real-time gradients are available. The trajectories of all agents in both cases are shown to be well-defined and achieve the expected consensus on the optimal point. Two numerical examples are given to verify the efficacy of our algorithms.
This paper addresses the problem of positive consensus of directed multi-agent systems with observer-type output-feedback protocols. More specifically, directed graph is used to model the communication topology of the multi-agent system and linear matrix inequalities (LMIs) are used in the consensus analysis in this paper. Using positive systems theory and graph theory, a convex programming algorithm is developed to design appropriate protocols such that the multi-agent system is able to reach consensus with its state trajectory always remaining in the non-negative orthant. Finally, numerical simulations are given to illustrate the effectiveness of the derived theoretical results.
This paper deals with the H2 suboptimal output synchronization problem for heterogeneous linear multi-agent systems. Given a multi-agent system with possibly distinct agents and an associated H2 cost functional, the aim is to design output feedback based protocols that guarantee the associated cost to be smaller than a given upper bound while the controlled network achieves output synchronization. A design method is provided to compute such protocols. For each agent, the computation of its two local control gains involves two Riccati inequalities, each of dimension equal to the state space dimension of the agent. A simulation example is provided to illustrate the performance of the proposed protocols.
This paper deals with data-driven output synchronization for heterogeneous leader-follower linear multi-agent systems. Given a multi-agent system that consists of one autonomous leader and a number of heterogeneous followers with external disturbances, we provide necessary and sufficient data-based conditions for output synchronization. We also provide a design method for obtaining such output synchronizing protocols directly from data. The results are then extended to the special case that the followers are disturbance-free. Finally, a simulation example is provided to illustrate our results.
In this technical note, we investigate an optimal output consensus problem for heterogeneous uncertain nonlinear multi-agent systems. The considered agents are described by high-order nonlinear dynamics subject to both static and dynamic uncertainties. A two-step design, comprising sequential constructions of optimal signal generator and distributed partial stabilization feedback controller, is developed to overcome the difficulties brought by nonlinearities, uncertainties, and optimal requirements. Our study can not only assure an output consensus, but also achieve an optimal agreement characterized by a distributed optimization problem.