No Arabic abstract
Rutile TiO2 is a paradigmatic transition metal oxide with applications in optics, electronics, photocatalysis, etc., that are subject to pervasive electron-phonon interaction. To understand how energies of its electronic bands, and in general semiconductors or metals where the frontier orbitals have a strong d-band character, depend on temperature, we perform a comprehensive theoretical and experimental study of the effects of electron-phonon (e-p) interactions. In a two-photon photoemission (2PP) spectroscopy study we observe an unusual temperature dependence of electronic band energies within the conduction band of reduced rutile TiO2, which is contrary to the well understood sp-band semiconductors and points to a so far unexplained dichotomy in how the e-p interactions affect differently the materials where the frontier orbitals are derived from the sp- and d-orbitals. To develop a broadly applicable model, we employ state-of-the-art first-principles calculations that explain how phonons promote interactions between the Ti-3d orbitals of the conduction band within the octahedral crystal field. The characteristics differences in e-p interactions experienced by the Ti 3d-orbitals of rutile TiO2 crystal lattice are contrasted with the more familiar behavior of the Si 2s-orbitals of stishovite SiO2 polymorph, in which the frontier 2s-orbital experience a similar crystal field with the opposite effect...
Dirac semimetal PdTe2 single-crystal temperature-dependent ultrafast carrier and phonon dynamics were studied using ultrafast optical pump-probe spectroscopy. Two distinct carrier and coherent phonons relaxation processes were identified in the 5 K - 300 K range. Quantitative analysis revealed a fast relaxation process ({tau}_f) occurring on a subpicosecond time scale which originated from electron-phonon thermalization. This was followed by a slower relaxation process ({tau}_s) with a time scale of ~ 7-9.5 ps which originated from phonon-assisted electron-hole recombination. Two significant vibrational modes resolved at all measured temperatures and corresponded to Te atoms in-plane (E_g), and out-of-plane (A_1g), motion. As temperature increased both phonon modes softened markedly. A_1g mode frequency monotonically decreased as temperature increased. Its damping rate remained virtually unchanged. As expected, E_g decreased uniformly as temperatures rose. At temperatures above 80 K, there was insignificant change. Test results suggested that pure dephasing played an important role in the relaxation processes. PdTe2 phonon is thought responsible for its superconductive properties. Examining phonons behavior should improve the understanding of its complex superconductivity.
Nonequilibrium electron dynamics in solids is an important subject from both fundamental and technological points of view. The recent development of laser technology has enabled us to study ultrafast electron dynamics in the time domain. First-principles calculation is a powerful tool for analyzing such complex electron dynamics and clarifying the physics behind the experimental observation. In this article, we review the recent development of the first-principles calculation for light-induced electron dynamics in solids by revising its application to recent attosecond experiments. The electron dynamics calculations offer an accurate description of static and transient optical properties of solids and provide physics insight into light-induced electron dynamics. Furthermore, the microscopic decomposition of transient properties of nonequilibrium systems has been developed to extract microscopic information from the simulation results. The first-principles analysis opened a novel path to analyze the nonequilibrium electron dynamics in matter and to provide the fundamental understanding complementarily with the sophisticated experimental technique.
We present a method to efficiently combine the computation of electron-electron and electron-phonon self-energies, which enables the evaluation of electron-phonon coupling at the $G_0W_0$ level of theory for systems with hundreds of atoms. In addition, our approach, which is a generalization of a method recently proposed for molecules [J. Chem. Theory Comput. 2018, 14, 6269-6275], enables the inclusion of non-adiabatic and temperature effects at no additional computational cost. We present results for diamond and defects in diamond and discuss the importance of numerically accurate $G_0W_0$ band structures to obtain robust predictions of zero point renormalization (ZPR) of band gaps, and of the inclusion of non-adiabatic effect to accurately compute the ZPR of defect states in the band gap.
It is generally assumed in the thermoelectric community that the lattice thermal conductivity of a given material is independent of the electronic properties. This perspective is however questionable since the electron-phonon coupling could have certain effects on both the carrier and phonon transport, which in turn will affect the thermoelectric properties. Using SiGe compound as a prototypical example, we give an accurate prediction of the carrier relaxation time by considering scattering from all the phonon modes, as opposed to the simple deformation potential theory. It is found that the carrier relaxation time does not change much with the concentration, which is however not the case for the phonon transport where the lattice thermal conductivity can be significantly reduced by electron-phonon coupling at higher carrier concentration. As a consequence, the figure-of-merit of SiGe compound is obviously enhanced at optimized carrier concentration, and becomes more pronounced at elevated temperature.
We develop a method for calculating the electron-phonon vertex in polar semiconductors and insulators from first principles. The present formalism generalizes the Frohlich vertex to the case of anisotropic materials and multiple phonon branches, and can be used either as a post-processing correction to standard electron-phonon calculations, or in conjunction with {it ab initio} interpolation based on maximally localized Wannier functions. We demonstrate this formalism by investigating the electron-phonon interactions in anatase TiO$_2$, and show that the polar vertex significantly reduces the electron lifetimes and enhances the anisotropy of the coupling. The present work enables {it ab initio} calculations of carrier mobilities, lifetimes, mass enhancement, and pairing in polar materials.