Do you want to publish a course? Click here

First-principles calculations for attosecond electron dynamics in solids

103   0   0.0 ( 0 )
 Added by Shunsuke Sato
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Nonequilibrium electron dynamics in solids is an important subject from both fundamental and technological points of view. The recent development of laser technology has enabled us to study ultrafast electron dynamics in the time domain. First-principles calculation is a powerful tool for analyzing such complex electron dynamics and clarifying the physics behind the experimental observation. In this article, we review the recent development of the first-principles calculation for light-induced electron dynamics in solids by revising its application to recent attosecond experiments. The electron dynamics calculations offer an accurate description of static and transient optical properties of solids and provide physics insight into light-induced electron dynamics. Furthermore, the microscopic decomposition of transient properties of nonequilibrium systems has been developed to extract microscopic information from the simulation results. The first-principles analysis opened a novel path to analyze the nonequilibrium electron dynamics in matter and to provide the fundamental understanding complementarily with the sophisticated experimental technique.



rate research

Read More

An accurate and easily extendable method to deal with lattice dynamics of solids is offered. It is based on first-principles molecular dynamics simulations and provides a consistent way to extract the best possible harmonic - or higher order - potential energy surface at finite temperatures. It is designed to work even for strongly anharmonic systems where the traditional quasiharmonic approximation fails. The accuracy and convergence of the method are controlled in a straightforward way. Excellent agreement of the calculated phonon dispersion relations at finite temperature with experimental results for bcc Li and bcc Zr is demonstrated.
Core-electron x-ray photoelectron spectroscopy is a powerful technique for studying the electronic structure and chemical composition of molecules, solids and surfaces. However, the interpretation of measured spectra and the assignment of peaks to atoms in specific chemical environments is often challenging. Here, we address this problem and introduce a parameter-free computational approach for calculating absolute core-electron binding energies. In particular, we demonstrate that accurate absolute binding energies can be obtained from the total energy difference of the ground state and a state with an explicit core hole when exchange and correlation effects are described by a recently developed meta-generalized gradient approximation and relativistic effects are included even for light elements. We carry out calculations for molecules, solids and surface species and find excellent agreement with available experimental measurements. For example, we find a mean absolute error of only 0.16 eV for a reference set of 103 molecular core-electron binding energies. The capability to calculate accurate absolute core-electron binding energies will enable new insights into a wide range of chemical surface processes that are studied by x-ray photoelectron spectroscopy.
The bulk photovoltaic effect (BPVE) refers to current generation due to illumination by light in a homogeneous bulk material lacking inversion symmetry. In addition to the intensively studied shift current, the ballistic current, which originates from asymmetric carrier generation due to scattering processes, also constitutes an important contribution to the overall kinetic model of the BPVE. In this letter, we use a perturbative approach to derive a formula for the ballistic current resulting from the intrinsic electron-phonon scattering in a form amenable to first-principles calculation. We then implement the theory and calculate the ballistic current of the prototypical BPVE material ch{BaTiO3} using quantum-mechanical density functional theory. The magnitude of the ballistic current is comparable to that of shift current, and the total spectrum (shift plus ballistic) agrees well with the experimentally measured photocurrents. Furthermore, we show that the ballistic current is sensitive to structural change, which could benefit future photovoltaic materials design.
We present a method to efficiently combine the computation of electron-electron and electron-phonon self-energies, which enables the evaluation of electron-phonon coupling at the $G_0W_0$ level of theory for systems with hundreds of atoms. In addition, our approach, which is a generalization of a method recently proposed for molecules [J. Chem. Theory Comput. 2018, 14, 6269-6275], enables the inclusion of non-adiabatic and temperature effects at no additional computational cost. We present results for diamond and defects in diamond and discuss the importance of numerically accurate $G_0W_0$ band structures to obtain robust predictions of zero point renormalization (ZPR) of band gaps, and of the inclusion of non-adiabatic effect to accurately compute the ZPR of defect states in the band gap.
Solid-state materials have recently emerged as a new stage of strong-field physics and attosecond science. The mechanism of the electron dynamics driven by an ultrashort intense laser pulse is under intensive discussion. Here we theoretically discuss momentum-space strong-field electron dynamics in graphene and crystalline dielectrics and semiconductors. First, within massless Dirac fermion and tight-binding models for graphene, we rigorously derive intraband displacement and interband transition, which form the basis for understanding solid-state strong-field physics including high-harmonic generation (HHG). Then, based on the time-dependent Schrodinger equation for a one-dimensional model crystal, we introduce a simple, multiband, momentum-space three-step model that incorporates intraband displacement, interband tunneling, and recombination with a valence band hole. We also analyze how the model is modified by electron-hole interaction. Finally, actual three-dimensional materials are investigated. We present a time-dependent density-matrix method whose results for HHG are compared with experimental measurement results. Moreover, we describe the dynamical Franz-Keldysh effect in femtosecond time resolution, i.e., the time-dependent modulation of a dielectric function under an intense laser field, using a real-time time-dependent density functional theory.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا