Do you want to publish a course? Click here

Cosmic voids in modified gravity models with massive neutrinos

96   0   0.0 ( 0 )
 Added by Sofia Contarini
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Cosmic voids are progressively emerging as a new viable cosmological probe. Their abundance and density profiles are sensitive to modifications of gravity, as well as to dark energy and neutrinos. The main goal of this work is to investigate the possibility of exploiting cosmic void statistics to disentangle the degeneracies resulting from a proper combination of $f(R)$ modified gravity and neutrino mass. We use N-body simulations to analyse the density profiles and size function of voids traced by both dark matter particles and haloes. We find clear evidence of the enhancement of gravity in $f(R)$ cosmologies in the void density profiles at $z=1$. However, these effects can be almost completely overridden by the presence of massive neutrinos because of their thermal free-streaming. Despite the limited volume of the analysed simulations does not allow us to achieve a statistically relevant abundance of voids larger than $40 mathrm{Mpc}/h$, we find that the void size function at high redshifts and for large voids is potentially an effective probe to disentangle these degenerate cosmological models, which is key in the prospective of the upcoming wide field redshift surveys.



rate research

Read More

Modified gravity and massive neutrino cosmologies are two of the most interesting scenarios that have been recently explored to account for possible observational deviations from the concordance $Lambda$-cold dark matter ($Lambda$CDM) model. In this context, we investigated the large-scale structure of the Universe by exploiting the dustp simulations that implement, simultaneously, the effects of $f(R)$ gravity and massive neutrinos. To study the possibility of breaking the degeneracy between these two effects, we analysed the redshift-space distortions in the clustering of dark matter haloes at different redshifts. Specifically, we focused on the monopole and quadrupole of the two-point correlation function, both in real and redshift space. The deviations with respect to $Lambda$CDM model have been quantified in terms of the linear growth rate parameter. We found that redshift-space distortions provide a powerful probe to discriminate between $Lambda$CDM and modified gravity models, especially at high redshifts ($z gtrsim 1$), even in the presence of massive neutrinos.
In a recent work, Baldi et al. highlighted the issue of cosmic degeneracies, consisting in the fact that the standard statistics of the large-scale structure might not be sufficient to conclusively test cosmological models beyond $Lambda $CDM when multiple extensions of the standard scenario coexist in nature. In particular, it was shown that the characteristic features of an $f(R)$ Modified Gravity theory and of massive neutrinos with an appreciable total mass $Sigma _{i}m_{ u _{i}}$ are suppressed in most of the basic large-scale structure observables for a specific combination of the main parameters of the two non-standard models. In the present work, we explore the possibility that the mean specific size of the supercluster spines -- which was recently proposed as a non-standard statistics by Shim and Lee to probe gravity at large scales -- can help to break this cosmic degeneracy. By analyzing the halo samples from N-body simulations featuring various combinations of $f(R)$ and $Sigma _{i}m_{ u _{i}}$ we find that -- at the present epoch -- the value of $Sigma _{i}m_{ u _{i}}$ required to maximally suppress the effects of $f(R)$ gravity on the specific sizes of the superclusters spines is different from that found for the other standard statistics. Furthermore, it is also shown that at higher redshifts ($zge 0.3$) the deviations of the mean specific sizes of the supercluster spines for all of the four considered combinations from its value for the standard $Lambda$CDM case are statistically significant.
Do void statistics contain information beyond the tracer 2-point correlation function? Yes! As we vary the sum of the neutrino masses, we find void statistics contain information absent when using just tracer 2-point statistics. Massive neutrinos uniquely affect cosmic voids. We explore their impact on void clustering using both the DEMNUni and MassiveNuS simulations. For voids, neutrino effects depend on the observed void tracers. As the neutrino mass increases, the number of small voids traced by cold dark matter particles increases and the number of large voids decreases. Surprisingly, when massive, highly biased, halos are used as tracers, we find the opposite effect. The scale at which voids cluster, as well as the void correlation, is similarly sensitive to the sum of neutrino masses and the tracers. This scale dependent trend is not due to simulation volume or halo density. The interplay of these signatures in the void abundance and clustering leaves a distinct fingerprint that could be detected with observations and potentially help break degeneracies between different cosmological parameters. This paper paves the way to exploit cosmic voids in future surveys to constrain the mass of neutrinos.
Cosmic voids offer an extraordinary opportunity to study the effects of massive neutrinos on cosmological scales. Because they are freely streaming, neutrinos can penetrate the interior of voids more easily than cold dark matter or baryons, which makes their relative contribution to the mass budget in voids much higher than elsewhere in the Universe. In simulations it has recently been shown how various characteristics of voids in the matter distribution are affected by neutrinos, such as their abundance, density profiles, dynamics, and clustering properties. However, the tracers used to identify voids in observations (e.g., galaxies or halos) are affected by neutrinos as well, and isolating the unique neutrino signatures inherent to voids becomes more difficult. In this paper we make use of the DEMNUni suite of simulations to investigate the clustering bias of voids in Fourier space as a function of their core density and compensation. We find a clear dependence on the sum of neutrino masses that remains significant even for void statistics extracted from halos. In particular, we observe that the amplitude of the linear void bias increases with neutrino mass for voids defined in dark matter, whereas this trend gets reversed and slightly attenuated when measuring the relative void-halo bias using voids identified in the halo distribution. Finally, we argue how the original behaviour can be restored when considering observations of the total matter distribution (e.g. via weak lensing), and comment on scale-dependent effects in the void bias that may provide additional information on neutrinos in the future.
The $Lambda$CDM concordance model is very successful at describing our Universe with high accuracy and few parameters. Despite its successes, a few tensions persist; most notably, the best-fit $Lambda$CDM model, as derived from the Planck CMB data, largely overpredicts the abundance of SZ clusters when using their standard mass calibration. Whether this is a sign of an incorrect calibration or the need for new physics remains a matter of debate. Here we examined two simple extensions of the standard model and their ability to release this tension: massive neutrinos and a simple modified gravity model via a non-standard growth index $gamma$. We used both the Planck CMB and SZ cluster counts as datasets, with or without local X-ray clusters. In the case of massive neutrinos, the SZ calibration $(1-b)$ is constrained to $0.59^{+0.03}_{-0.04}$ (68%), more than 5$sigma$ away from its standard value $sim0.8$. We found little correlation between $sum m_ u$ and $(1-b)$, corroborating previous conclusions derived from X-ray clusters; massive neutrinos do not alleviate the cluster-CMB tension. With our simple $gamma$ model, we found a large correlation between calibration and growth index but contrary to local X-ray clusters, SZ clusters are able to break the degeneracy between the two thanks to their extended $z$ range. The calibration $(1-b)$ was then constrained to $0.60^{+0.05}_{-0.07}$, leading to an interesting constraint on $gamma=0.60pm 0.13$. When both massive neutrinos and modified gravity were allowed, preferred values remained centred on standard $Lambda$CDM values, but $(1-b)sim0.8$ was allowed (though only at the $2sigma$ level) provided $sum m_ usim0.34 $ eV and $gammasim0.8$. We conclude that massive neutrinos do not relieve the cluster-CMB tension and that a calibration close to the standard value $0.8$ would call for new physics in the gravitational sector.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا