Do you want to publish a course? Click here

A Light-Weight Object Detection Framework with FPA Module for Optical Remote Sensing Imagery

285   0   0.0 ( 0 )
 Added by Lingbin Kong
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

With the development of remote sensing technology, the acquisition of remote sensing images is easier and easier, which provides sufficient data resources for the task of detecting remote sensing objects. However, how to detect objects quickly and accurately from many complex optical remote sensing images is a challenging hot issue. In this paper, we propose an efficient anchor free object detector, CenterFPANet. To pursue speed, we use a lightweight backbone and introduce the asymmetric revolution block. To improve the accuracy, we designed the FPA module, which links the feature maps of different levels, and introduces the attention mechanism to dynamically adjust the weights of each level of feature maps, which solves the problem of detection difficulty caused by large size range of remote sensing objects. This strategy can improve the accuracy of remote sensing image object detection without reducing the detection speed. On the DOTA dataset, CenterFPANet mAP is 64.00%, and FPS is 22.2, which is close to the accuracy of the anchor-based methods currently used and much faster than them. Compared with Faster RCNN, mAP is 6.76% lower but 60.87% faster. All in all, CenterFPANet achieves a balance between speed and accuracy in large-scale optical remote sensing object detection.



rate research

Read More

Detection of objects is extremely important in various aerial vision-based applications. Over the last few years, the methods based on convolution neural networks have made substantial progress. However, because of the large variety of object scales, densities, and arbitrary orientations, the current detectors struggle with the extraction of semantically strong features for small-scale objects by a predefined convolution kernel. To address this problem, we propose the rotation equivariant feature image pyramid network (REFIPN), an image pyramid network based on rotation equivariance convolution. The proposed model adopts single-shot detector in parallel with a lightweight image pyramid module to extract representative features and generate regions of interest in an optimization approach. The proposed network extracts feature in a wide range of scales and orientations by using novel convolution filters. These features are used to generate vector fields and determine the weight and angle of the highest-scoring orientation for all spatial locations on an image. By this approach, the performance for small-sized object detection is enhanced without sacrificing the performance for large-sized object detection. The performance of the proposed model is validated on two commonly used aerial benchmarks and the results show our proposed model can achieve state-of-the-art performance with satisfactory efficiency.
For high spatial resolution (HSR) remote sensing images, bitemporal supervised learning always dominates change detection using many pairwise labeled bitemporal images. However, it is very expensive and time-consuming to pairwise label large-scale bitemporal HSR remote sensing images. In this paper, we propose single-temporal supervised learning (STAR) for change detection from a new perspective of exploiting object changes in unpaired images as supervisory signals. STAR enables us to train a high-accuracy change detector only using textbf{unpaired} labeled images and generalize to real-world bitemporal images. To evaluate the effectiveness of STAR, we design a simple yet effective change detector called ChangeStar, which can reuse any deep semantic segmentation architecture by the ChangeMixin module. The comprehensive experimental results show that ChangeStar outperforms the baseline with a large margin under single-temporal supervision and achieves superior performance under bitemporal supervision. Code is available at https://github.com/Z-Zheng/ChangeStar
Arising from the various object types and scales, diverse imaging orientations, and cluttered backgrounds in optical remote sensing image (RSI), it is difficult to directly extend the success of salient object detection for nature scene image to the optical RSI. In this paper, we propose an end-to-end deep network called LV-Net based on the shape of network architecture, which detects salient objects from optical RSIs in a purely data-driven fashion. The proposed LV-Net consists of two key modules, i.e., a two-stream pyramid module (L-shaped module) and an encoder-decoder module with nested connections (V-shaped module). Specifically, the L-shaped module extracts a set of complementary information hierarchically by using a two-stream pyramid structure, which is beneficial to perceiving the diverse scales and local details of salient objects. The V-shaped module gradually integrates encoder detail features with decoder semantic features through nested connections, which aims at suppressing the cluttered backgrounds and highlighting the salient objects. In addition, we construct the first publicly available optical RSI dataset for salient object detection, including 800 images with varying spatial resolutions, diverse saliency types, and pixel-wise ground truth. Experiments on this benchmark dataset demonstrate that the proposed method outperforms the state-of-the-art salient object detection methods both qualitatively and quantitatively.
Despite the remarkable advances in visual saliency analysis for natural scene images (NSIs), salient object detection (SOD) for optical remote sensing images (RSIs) still remains an open and challenging problem. In this paper, we propose an end-to-end Dense Attention Fluid Network (DAFNet) for SOD in optical RSIs. A Global Context-aware Attention (GCA) module is proposed to adaptively capture long-range semantic context relationships, and is further embedded in a Dense Attention Fluid (DAF) structure that enables shallow attention cues flow into deep layers to guide the generation of high-level feature attention maps. Specifically, the GCA module is composed of two key components, where the global feature aggregation module achieves mutual reinforcement of salient feature embeddings from any two spatial locations, and the cascaded pyramid attention module tackles the scale variation issue by building up a cascaded pyramid framework to progressively refine the attention map in a coarse-to-fine manner. In addition, we construct a new and challenging optical RSI dataset for SOD that contains 2,000 images with pixel-wise saliency annotations, which is currently the largest publicly available benchmark. Extensive experiments demonstrate that our proposed DAFNet significantly outperforms the existing state-of-the-art SOD competitors. https://github.com/rmcong/DAFNet_TIP20
With the rapid development of deep learning, many deep learning-based approaches have made great achievements in object detection task. It is generally known that deep learning is a data-driven method. Data directly impact the performance of object detectors to some extent. Although existing datasets have included common objects in remote sensing images, they still have some limitations in terms of scale, categories, and images. Therefore, there is a strong requirement for establishing a large-scale benchmark on object detection in high-resolution remote sensing images. In this paper, we propose a novel benchmark dataset with more than 1 million instances and more than 15,000 images for Fine-grAined object recognItion in high-Resolution remote sensing imagery which is named as FAIR1M. All objects in the FAIR1M dataset are annotated with respect to 5 categories and 37 sub-categories by oriented bounding boxes. Compared with existing detection datasets dedicated to object detection, the FAIR1M dataset has 4 particular characteristics: (1) it is much larger than other existing object detection datasets both in terms of the quantity of instances and the quantity of images, (2) it provides more rich fine-grained category information for objects in remote sensing images, (3) it contains geographic information such as latitude, longitude and resolution, (4) it provides better image quality owing to a careful data cleaning procedure. To establish a baseline for fine-grained object recognition, we propose a novel evaluation method and benchmark fine-grained object detection tasks and a visual classification task using several State-Of-The-Art (SOTA) deep learning-based models on our FAIR1M dataset. Experimental results strongly indicate that the FAIR1M dataset is closer to practical application and it is considerably more challenging than existing datasets.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا