Do you want to publish a course? Click here

Dynamic mitigation of two-stream instability in plasma

104   0   0.0 ( 0 )
 Added by Shigeo Kawata
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

A dynamic mitigation mechanism of the two-stream instability is discussed based on a phase control for plasma and fluid instabilities. The basic idea for the dynamic mitigation mechanism by the phase control was proposed in the paper [Phys. Plasmas 19, 024503(2012)]. The mitigation method is applied to the two-stream instability in this paper. In general, instabilities appear from the perturbations, and normally the perturbation phase is unknown. Therefore, the instability growth rate is discussed in fluids and plasmas. However, if the perturbation phase is known, the instability growth can be controlled by a superimposition of perturbations imposed actively. For instance, a perturbed driver induces a perturbation to fluids or plasmas; if the perturbation induced by the perturbed driver is oscillated actively by the driver oscillation, the perturbation phase is known and the perturbation amplitude can be controlled, like a feedforward control. The application result shown in this paper demonstrates that the dynamic mitigation mechanism works well to smooth the non-uniformities and mitigate the instabilities in plasmas.



rate research

Read More

Dynamic mitigation is presented for filamentation instability and magnetic reconnection in a plasm driven by a wobbling electron sheet current. The wobbling current introduces an oscillating perturbation and smooths the perturbation. The sheet current creates an anti-parallel magnetic field in plasma. The initial small perturbation induces the electron beam filamentation and the magnetic reconnection. When the wobbling or oscillation motion is added to the sheet electron beam along the sheet current surface, the perturbation phase is mixed and consequently the instability growth is delayed remarkably. Normally plasma instabilities are discussed by the growth rate, because it would be difficult to measure or detect the phase of the perturbations in plasmas. However, the phase of perturbation can be controlled externally, for example, by the driver wobbling motion. The superimposition of perturbations introduced actively results in the perturbation smoothing, and the instability growth can be reduced, like feed-forward control.
Current models predict the hose instability to crucially limit the applicability of plasma-wakefield accelerators. By developing an analytical model which incorporates the evolution of the hose instability over long propagation distances, this work demonstrates that the inherent drive-beam energy loss, along with an initial beam energy spread detune the betatron oscillations of beam electrons, and thereby mitigate the instability. It is also shown that tapered plasma profiles can strongly reduce initial hosing seeds. Hence, we demonstrate that the propagation of a drive beam can be stabilized over long propagation distances, paving the way for the acceleration of high-quality electron beams in plasma-wakefield accelerators. We find excellent agreement between our models and particle-in-cell simulations.
86 - S. Kawata , T. Karino , Y. J. Gu 2018
The paper presents a review of dynamic stabilization mechanisms for plasma instabilities. One of the dynamic stabilization mechanisms for plasma instability was proposed in the papers [Phys. Plasmas 19, 024503(2012) and references therein], based on a perturbation phase control. In general, instabilities emerge from the perturbations of the physical quantity. Normally the perturbation phase is unknown so that the instability growth rate is discussed. However, if the perturbation phase is known, the instability growth can be controlled by a superimposition of perturbations imposed actively: if the perturbation is introduced by, for example, a driving beam axis oscillation or so, the perturbation phase can be controlled and the instability growth is mitigated by the superimposition of the growing perturbations. Based on this mechanism we present the application results of the dynamic stabilization mechanism to the Rayleigh-Taylor (R-T) instability and to the filamentation instability as typical examples in this paper. On the other hand, in the paper [Comments Plasma Phys. Controlled Fusion 3, 1(1977)] another mechanism was proposed to stabilize the R-T instability based on the strong oscillation of acceleration, which was realized by the laser intensity modulation in laser inertial fusion [Phys. Rev. Lett. 71, 3131(1993)]. In the latter mechanism, the total acceleration strongly oscillates, so that the additional oscillating force is added to create a new stable window in the system. Originally the latter mechanism was proposed by P. L. Kapitza, and it was applied to the stabilization of an inverted pendulum. In this paper we review the two dynamic stabilization mechanisms, and present the application results of the former dynamic stabilization mechanism.
137 - V. N. Soshnikov 2007
To better understanding the principal features of collisionless damping/growing plasma waves we have implemented a demonstrative calculation for the simplest cases of electron waves in two-stream plasmas with the delta-function type electron velocity distribution function of each of the streams with velocities v(1) and v(2). The traditional dispersion equation is reduced to an algebraic 4th order equation, for which numerical solutions are presented for a variant of equal stream densities. In the case of uniform half-infinite slab one finds two dominant type solutions: non-damping forward waves and forward complex conjugated exponentially both damping and growing waves. Beside it in this case there is no necessity of calculation any logarithmically divergent indefinite integrals. The possibility of wave amplifying might be useful in practical applications.
266 - S. Kawata , T. Karino 2015
A dynamic mitigation mechanism for instability growth was proposed and discussed in the paper [Phys. Plasmas 19, 024503 (2012)]. In the present paper the robustness of the dynamic instability mitigation mechanism is discussed further. The results presented here show that the mechanism of the dynamic instability mitigation is rather robust against changes in the phase, the amplitude and the wavelength of the wobbling perturbation applied. Generally instability would emerge from the perturbation of the physical quantity. Normally the perturbation phase is unknown so that the instability growth rate is discussed. However, if the perturbation phase is known, the instability growth can be controlled by a superposition of perturbations imposed actively: if the perturbation is induced by, for example, a driving beam axis oscillation or wobbling, the perturbation phase could be controlled and the instability growth is mitigated by the superposition of the growing perturbations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا