No Arabic abstract
Objective: A numerical 3D model of the human trunk was developed to study the biomechanical effects of lumbar belts used to treat low back pain. Methods: This model was taken from trunk radiographies of a person and simplified so as to make a parametric study by varying morphological parameters of the patient, characteristic parameters of the lumbar belt and mechanical parameters of body and finally to determine the parameters influencing the effects of low back pain when of wearing the lumbar belt. The loading of lumbar belt is modelled by Laplaces law. These results were compared with clinical study. Results: All the results of this parametric study showed that the choice of belt is very important depending on the patients morphology. Surprisingly, the therapeutic treatment is not influenced by the mechanical characteristics of the body structures except the mechanical properties of intervertebral discs. Discussion: The numerical model can serve as a basis for more in-depth studies concerning the analysis of efficiency of lumbar belts in low back pain. In order to study the impact of the belts architecture, the pressure applied to the trunk modelled by Laplaces law could be improved. This model could also be used as the basis for a study of the impact of the belt over a period of wearing time. Indeed, the clinical study shows that movement has an important impact on the distribution of pressure applied by the belt.
Non-specific chronic low back pain (NSCLBP) is a major health problem, affecting about one fifth of the population worldwide. To avoid further pain or injury, patients with NSCLBP seem to adopt a stiffer movement pattern during everyday living activities. However, it remains unknown how NSCLBP affects the lumbar lordosis angle (LLA) during repetitive activities such as walking or running. This pilot study therefore aimed at exploring possible NSCLBP-related alterations in LLAs during walking and running by focusing on discrete parameters as well as continuous data. Thirteen patients with NSCLBP and 20 healthy pain-free controls were enrolled and underwent a full-body movement analysis involving various everyday living activities such as standing, walking and running. LLAs were derived from markers placed on the spinous processes of the vertebrae L1-L5 and S1. Possible group differences in discrete (average and range of motion (ROM)) and continuous LLAs were analyzed descriptively using mean differences with confidence intervals ranging from 95% to 75%. Patients with NSCLBP indicated reduced average LLAs during standing, walking and running and a tendency for lower LLA-ROM during walking. Analyses of continuous data indicated the largest group differences occurring around 25% and 70% of the walking and 25% and 75% of the running cycle. Furthermore, patients indicated a reversed movement pattern during running, with increasing instead of a decreasing LLAs after foot strike. This study provides preliminary evidence that NSCLBP might affect LLAs during walking and running. These results can be used as a basis for future large-scale investigations involving hypothesis testing.
Cardiovascular simulations are increasingly used for non-invasive diagnosis of cardiovascular disease, to guide treatment decisions, and in the design of medical devices. Quantitative assessment of the variability of simulation outputs due to input uncertainty is a key step toward further integration of cardiovascular simulations in the clinical workflow. In this study, we present uncertainty quantification in computational models of the coronary circulation to investigate the effect of uncertain parameters, including coronary pressure waveform, intramyocardial pressure, morphometry exponent, and the vascular wall Youngs modulus. We employ a left coronary artery model with deformable vessel walls, simulated via an ALE framework for FSI, with a prescribed inlet pressure and open-loop lumped parameter network outlet boundary conditions. Stochastic modeling of the uncertain inputs is determined from intra-coronary catheterization data or gathered from the literature. Uncertainty propagation is performed using several approaches including Monte Carlo, Quasi MC, stochastic collocation, and multiwavelet stochastic expansion. Variabilities in QoI, including branch pressure, flow, wall shear stress, and wall deformation are assessed. We find that uncertainty in inlet pressures and intramyocardial pressures significantly affect all resulting QoIs, while uncertainty in elastic modulus only affects the mechanical response of the vascular wall. Variability in the morphometry exponent has little effect on coronary hemodynamics or wall mechanics. Finally, we compare convergence behaviors of statistics of QoIs using several uncertainty propagation methods. From the simulation results, we conclude that the multi-wavelet stochastic expansion shows superior accuracy and performance against Quasi Monte Carlo and stochastic collocation methods.
Introduction: Topical intranasal drugs are widely prescribed for Chronic Rhinosinusitis (CRS), although delivery can vary with device type and droplet size. The study objective was to compare nebulized and sprayed droplet deposition in the paranasal sinuses and ostiomeatal complex (OMC) across multiple droplet sizes in CRS patients using computational fluid dynamics (CFD). Methods: Three-dimensional models of sinonasal cavities were constructed from computed tomography (CT) scans of three subjects with CRS refractory to medical therapy using imaging software. Assuming steady-state inspiratory airflow at resting rate, CFD was used to simulate 1-120 {mu}m sprayed droplet deposition in the left and right sinuses and OMC with spray nozzle positioning as in current nasal spray use instructions. Zero-velocity nebulization simulations were performed for 1-30 {mu}m droplet sizes, maximal sinus and OMC deposition fractions (MSDF) were obtained, and sizes that achieved at least 50% of MSDF were identified. Nebulized MSDF was compared to sprayed droplet deposition. We also validated CFD framework through in vitro experiments. Results: Among nebulized droplet sizes, 11-14 {mu}m droplets achieved at least 50% of MSDF in all six sinonasal cavities. Five of six sinonasal cavities had greater sinus and OMC deposition with nebulized droplets than with sprayed droplets at optimal sizes. Conclusions: Nebulized droplets may target the sinuses and OMC more effectively than sprayed particles at sizes achieving best deposition. Further studies are needed to confirm our preliminary findings. Several commercial nasal nebulizers have average particle sizes outside the optimal nebulized droplet size range found here, suggesting potential for product enhancement.
Vehicle safety systems have substantially decreased motor vehicle crash-related injuries and fatalities, but injuries to the lumbar spine still have been reported. Experimental and computational analyses of upright and, particularly, reclined occupants in frontal crashes have shown that the lumbar spine can be subjected to axial compression followed by combined compression-flexion loading. Lumbar spine failure tolerance in combined compression-flexion has not been widely explored in the literature. Therefore, the goal of this study was to measure the failure tolerance of the lumbar spine in combined compression and flexion. Forty 3-vertebra lumbar spine segments were pre-loaded with axial compression and then subjected to dynamic flexion bending until failure. Clinically relevant middle vertebra fractures were observed in twenty-one of the specimens, including compression and burst fractures. The remaining nineteen specimens experienced failure at the potting grip interface. Since specimen characteristics and pre-test axial load varied widely within the sample, failure forces (mean 3.4 kN, range 1.6-5.1 kN) and moments (mean 73 Nm, range 0-181 Nm) also varied widely. Tobit univariate regressions were performed to determine the relationship between censored failure tolerance and specimen sex, segment type (upper/lower), age, and cross-sectional area. Age, sex, and cross-sectional area significantly affected failure force and moment individually (p<0.0024). These data can be used to develop injury prediction tools for lumbar spine fractures and further research in future safety systems.
Quantitative metrics in lung computed tomography (CT) images have been widely used, often without a clear connection with physiology. This work proposes a patient-independent model for the estimation of well-aerated volume of lungs in CT images (WAVE). A Gaussian fit, with mean (Mu.f) and width (Sigma.f) values, was applied to the lower CT histogram data points of the lung to provide the estimation of the well-aerated lung volume (WAVE.f). Independence from CT reconstruction parameters and respiratory cycle was analysed using healthy lung CT images and 4DCT acquisitions. The Gaussian metrics and first order radiomic features calculated for a third cohort of COVID-19 patients were compared with those relative to healthy lungs. Each lung was further segmented in 24 subregions and a new biomarker derived from Gaussian fit parameter Mu.f was proposed to represent the local density changes. WAVE.f resulted independent from the respiratory motion in 80% of the cases. Differences of 1%, 2% and up to 14% resulted comparing a moderate iterative strength and FBP algorithm, 1 and 3 mm of slice thickness and different reconstruction kernel. Healthy subjects were significantly different from COVID-19 patients for all the metrics calculated. Graphical representation of the local biomarker provides spatial and quantitative information in a single 2D picture. Unlike other metrics based on fixed histogram thresholds, this model is able to consider the inter-and intra-subject variability. In addition, it defines a local biomarker to quantify the severity of the disease, independently of the observer.