No Arabic abstract
Considering the constrained stochastic optimization problem over a time-varying random network, where the agents are to collectively minimize a sum of objective functions subject to a common constraint set, we investigate asymptotic properties of a distributed algorithm based on dual averaging of gradients. Different from most existing works on distributed dual averaging algorithms that mainly concentrating on their non-asymptotic properties, we not only prove almost sure convergence and the rate of almost sure convergence, but also asymptotic normality and asymptotic efficiency of the algorithm. Firstly, for general constrained convex optimization problem distributed over a random network, we prove that almost sure consensus can be archived and the estimates of agents converge to the same optimal point. For the case of linear constrained convex optimization, we show that the mirror map of the averaged dual sequence identifies the active constraints of the optimal solution with probability 1, which helps us to prove the almost sure convergence rate and then establish asymptotic normality of the algorithm. Furthermore, we also verify that the algorithm is asymptotically optimal. To the best of our knowledge, it seems to be the first asymptotic normality result for constrained distributed optimization algorithms. Finally, a numerical example is provided to justify the theoretical analysis.
A collection of optimization problems central to power system operation requires distributed solution architectures to avoid the need for aggregation of all information at a central location. In this paper, we study distributed dual subgradient methods to solve three such optimization problems. Namely, these are tie-line scheduling in multi-area power systems, coordination of distributed energy resources in radial distribution networks, and joint dispatch of transmission and distribution assets. With suitable relaxations or approximations of the power flow equations, all three problems can be reduced to a multi-agent constrained convex optimization problem. We utilize a constant step-size dual subgradient method with averaging on these problems. For this algorithm, we provide a convergence guarantee that is shown to be order-optimal. We illustrate its application on the grid optimization problems.
We investigate a distributed optimization problem over a cooperative multi-agent time-varying network, where each agent has its own decision variables that should be set so as to minimize its individual objective subject to local constraints and global coupling constraints. Based on push-sum protocol and dual decomposition, we design a distributed regularized dual gradient algorithm to solve this problem, in which the algorithm is implemented in time-varying directed graphs only requiring the column stochasticity of communication matrices. By augmenting the corresponding Lagrangian function with a quadratic regularization term, we first obtain the bound of the Lagrangian multipliers which does not require constructing a compact set containing the dual optimal set when compared with most of primal-dual based methods. Then, we obtain that the convergence rate of the proposed method can achieve the order of $mathcal{O}(ln T/T)$ for strongly convex objective functions, where $T$ is the iterations. Moreover, the explicit bound of constraint violations is also given. Finally, numerical results on the network utility maximum problem are used to demonstrate the efficiency of the proposed algorithm.
This paper investigates accelerating the convergence of distributed optimization algorithms on non-convex problems. We propose a distributed primal-dual stochastic gradient descent~(SGD) equipped with powerball method to accelerate. We show that the proposed algorithm achieves the linear speedup convergence rate $mathcal{O}(1/sqrt{nT})$ for general smooth (possibly non-convex) cost functions. We demonstrate the efficiency of the algorithm through numerical experiments by training two-layer fully connected neural networks and convolutional neural networks on the MNIST dataset to compare with state-of-the-art distributed SGD algorithms and centralized SGD algorithms.
This paper investigates how to accelerate the convergence of distributed optimization algorithms on nonconvex problems with zeroth-order information available only. We propose a zeroth-order (ZO) distributed primal-dual stochastic coordinates algorithm equipped with powerball method to accelerate. We prove that the proposed algorithm has a convergence rate of $mathcal{O}(sqrt{p}/sqrt{nT})$ for general nonconvex cost functions. We consider solving the generation of adversarial examples from black-box DNNs problem to compare with the existing state-of-the-art centralized and distributed ZO algorithms. The numerical results demonstrate the faster convergence rate of the proposed algorithm and match the theoretical analysis.
To solve distributed optimization efficiently with various constraints and nonsmooth functions, we propose a distributed mirror descent algorithm with embedded Bregman damping, as a generalization of conventional distributed projection-based algorithms. In fact, our continuous-time algorithm well inherits good capabilities of mirror descent approaches to rapidly compute explicit solutions to the problems with some specific constraint structures. Moreover, we rigorously prove the convergence of our algorithm, along with the boundedness of the trajectory and the accuracy of the solution.