Do you want to publish a course? Click here

Reverse-engineering Bar Charts Using Neural Networks

175   0   0.0 ( 0 )
 Added by Ying Zhao
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Reverse-engineering bar charts extracts textual and numeric information from the visual representations of bar charts to support application scenarios that require the underlying information. In this paper, we propose a neural network-based method for reverse-engineering bar charts. We adopt a neural network-based object detection model to simultaneously localize and classify textual information. This approach improves the efficiency of textual information extraction. We design an encoder-decoder framework that integrates convolutional and recurrent neural networks to extract numeric information. We further introduce an attention mechanism into the framework to achieve high accuracy and robustness. Synthetic and real-world datasets are used to evaluate the effectiveness of the method. To the best of our knowledge, this work takes the lead in constructing a complete neural network-based method of reverse-engineering bar charts.



rate research

Read More

Neural networks have been shown to be vulnerable against fault injection attacks. These attacks change the physical behavior of the device during the computation, resulting in a change of value that is currently being computed. They can be realized by various fault injection techniques, ranging from clock/voltage glitching to application of lasers to rowhammer. In this paper we explore the possibility to reverse engineer neural networks with the usage of fault attacks. SNIFF stands for sign bit flip fault, which enables the reverse engineering by changing the sign of intermediate values. We develop the first exact extraction method on deep-layer feature extractor networks that provably allows the recovery of the model parameters. Our experiments with Keras library show that the precision error for the parameter recovery for the tested networks is less than $10^{-13}$ with the usage of 64-bit floats, which improves the current state of the art by 6 orders of magnitude. Additionally, we discuss the protection techniques against fault injection attacks that can be applied to enhance the fault resistance.
Much of neuroscience aims at reverse engineering the brain, but we only record a small number of neurons at a time. We do not currently know if reverse engineering the brain requires us to simultaneously record most neurons or if multiple recordings from smaller subsets suffice. This is made even more important by the development of novel techniques that allow recording from selected subsets of neurons, e.g. using optical techniques. To get at this question, we analyze a neural network, trained on the MNIST dataset, using only partial recordings and characterize the dependency of the quality of our reverse engineering on the number of simultaneously recorded neurons. We find that reverse engineering of the nonlinear neural network is meaningfully possible if a sufficiently large number of neurons is simultaneously recorded but that this number can be considerably smaller than the number of neurons. Moreover, recording many times from small random subsets of neurons yields surprisingly good performance. Application in neuroscience suggests to approximate the I/O function of an actual neural system, we need to record from a much larger number of neurons. The kind of scaling analysis we perform here can, and arguably should be used to calibrate approaches that can dramatically scale up the size of recorded data sets in neuroscience.
It has been widely assumed that a neural network cannot be recovered from its outputs, as the network depends on its parameters in a highly nonlinear way. Here, we prove that in fact it is often possible to identify the architecture, weights, and biases of an unknown deep ReLU network by observing only its output. Every ReLU network defines a piecewise linear function, where the boundaries between linear regions correspond to inputs for which some neuron in the network switches between inactive and active ReLU states. By dissecting the set of region boundaries into components associated with particular neurons, we show both theoretically and empirically that it is possible to recover the weights of neurons and their arrangement within the network, up to isomorphism.
Despite the improvements in perception accuracies brought about via deep learning, developing systems combining accurate visual perception with the ability to reason over the visual percepts remains extremely challenging. A particular application area of interest from an accessibility perspective is that of reasoning over statistical charts such as bar and pie charts. To this end, we formulate the problem of reasoning over statistical charts as a classification task using MAC-Networks to give answers from a predefined vocabulary of generic answers. Additionally, we enhance the capabilities of MAC-Networks to give chart-specific answers to open-ended questions by replacing the classification layer by a regression layer to localize the textual answers present over the images. We call our network ChartNet, and demonstrate its efficacy on predicting both in vocabulary and out of vocabulary answers. To test our methods, we generated our own dataset of statistical chart images and corresponding question answer pairs. Results show that ChartNet consistently outperform other state-of-the-art methods on reasoning over these questions and may be a viable candidate for applications containing images of statistical charts.
We propose a novel method to generate fabrication blueprints from images of carpentered items. While 3D reconstruction from images is a well-studied problem, typical approaches produce representations that are ill-suited for computer-aided design and fabrication applications. Our key insight is that fabrication processes define and constrain the design space for carpentered objects, and can be leveraged to develop novel reconstruction methods. Our method makes use of domain-specific constraints to recover not just valid geometry, but a semantically valid assembly of parts, using a combination of image-based and geometric optimization techniques. We demonstrate our method on a variety of wooden objects and furniture, and show that we can automatically obtain designs that are both easy to edit and accurate recreations of the ground truth. We further illustrate how our method can be used to fabricate a physical replica of the captured object as well as a customized version, which can be produced by directly editing the reconstructed model in CAD software.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا