Do you want to publish a course? Click here

Reverse engineering neural networks from many partial recordings

109   0   0.0 ( 0 )
 Added by Elahe Arani
 Publication date 2019
  fields Biology
and research's language is English




Ask ChatGPT about the research

Much of neuroscience aims at reverse engineering the brain, but we only record a small number of neurons at a time. We do not currently know if reverse engineering the brain requires us to simultaneously record most neurons or if multiple recordings from smaller subsets suffice. This is made even more important by the development of novel techniques that allow recording from selected subsets of neurons, e.g. using optical techniques. To get at this question, we analyze a neural network, trained on the MNIST dataset, using only partial recordings and characterize the dependency of the quality of our reverse engineering on the number of simultaneously recorded neurons. We find that reverse engineering of the nonlinear neural network is meaningfully possible if a sufficiently large number of neurons is simultaneously recorded but that this number can be considerably smaller than the number of neurons. Moreover, recording many times from small random subsets of neurons yields surprisingly good performance. Application in neuroscience suggests to approximate the I/O function of an actual neural system, we need to record from a much larger number of neurons. The kind of scaling analysis we perform here can, and arguably should be used to calibrate approaches that can dramatically scale up the size of recorded data sets in neuroscience.



rate research

Read More

A major goal in neuroscience is to understand how populations of neurons code for stimuli or actions. While the number of neurons that can be recorded simultaneously is increasing at a fast pace, in most cases these recordings cannot access a complete population. In particular, it is hard to simultaneously record all the neurons of the same type in a given area. Recent progress have made possible to profile each recorded neuron in a given area thanks to genetic and physiological tools, and to pool together recordings from neurons of the same type across different experimental sessions. However, it is unclear how to infer the activity of a full population of neurons of the same type from these sequential recordings. Neural networks exhibit collective behaviour, e.g. noise correlations and synchronous activity, that are not directly captured by a conditionally-independent model that would just put together the spike trains from sequential recordings. Here we show that we can infer the activity of a full population of retina ganglion cells from sequential recordings, using a novel method based on copula distributions and maximum entropy modeling. From just the spiking response of each ganglion cell to a repeated stimulus, and a few pairwise recordings, we could predict the noise correlations using copulas, and then the full activity of a large population of ganglion cells of the same type using maximum entropy modeling. Remarkably, we could generalize to predict the population responses to different stimuli and even to different experiments. We could therefore use our method to construct a very large population merging cells responses from different experiments. We predicted synchronous activity accurately and showed it grew substantially with the number of neurons. This approach is a promising way to infer population activity from sequential recordings in sensory areas.
Reverse-engineering bar charts extracts textual and numeric information from the visual representations of bar charts to support application scenarios that require the underlying information. In this paper, we propose a neural network-based method for reverse-engineering bar charts. We adopt a neural network-based object detection model to simultaneously localize and classify textual information. This approach improves the efficiency of textual information extraction. We design an encoder-decoder framework that integrates convolutional and recurrent neural networks to extract numeric information. We further introduce an attention mechanism into the framework to achieve high accuracy and robustness. Synthetic and real-world datasets are used to evaluate the effectiveness of the method. To the best of our knowledge, this work takes the lead in constructing a complete neural network-based method of reverse-engineering bar charts.
Neural networks have been shown to be vulnerable against fault injection attacks. These attacks change the physical behavior of the device during the computation, resulting in a change of value that is currently being computed. They can be realized by various fault injection techniques, ranging from clock/voltage glitching to application of lasers to rowhammer. In this paper we explore the possibility to reverse engineer neural networks with the usage of fault attacks. SNIFF stands for sign bit flip fault, which enables the reverse engineering by changing the sign of intermediate values. We develop the first exact extraction method on deep-layer feature extractor networks that provably allows the recovery of the model parameters. Our experiments with Keras library show that the precision error for the parameter recovery for the tested networks is less than $10^{-13}$ with the usage of 64-bit floats, which improves the current state of the art by 6 orders of magnitude. Additionally, we discuss the protection techniques against fault injection attacks that can be applied to enhance the fault resistance.
It has been widely assumed that a neural network cannot be recovered from its outputs, as the network depends on its parameters in a highly nonlinear way. Here, we prove that in fact it is often possible to identify the architecture, weights, and biases of an unknown deep ReLU network by observing only its output. Every ReLU network defines a piecewise linear function, where the boundaries between linear regions correspond to inputs for which some neuron in the network switches between inactive and active ReLU states. By dissecting the set of region boundaries into components associated with particular neurons, we show both theoretically and empirically that it is possible to recover the weights of neurons and their arrangement within the network, up to isomorphism.
Understanding the localization properties of eigenvectors of complex networks is important to get insight into various structural and dynamical properties of the corresponding systems. Here, we analytically develop a scheme to construct a highly localized network for a given set of networks parameters that is the number of nodes and the number of interactions. We find that the localization behavior of the principal eigenvector (PEV) of such a network is sensitive against a single edge rewiring. We find evidences for eigenvalue crossing phenomena as a consequence of the single edge rewiring, in turn providing an origin to the sensitive behavior of the PEV localization. These insights were then used to analytically construct the highly localized network for a given set of networks parameters. The analysis provides fundamental insight into relationships between the structural and the spectral properties of networks for PEV localized networks. Further, we substantiate the existence of the eigenvalue crossing phenomenon by considering a linear-dynamical process, namely the ribonucleic acid (RNA) neutral network population dynamical model. The analysis presented here on model networks aids in understanding the steady-state behavior of a broad range of linear-dynamical processes, from epidemic spreading to biochemical dynamics associated with the adjacency matrices.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا