Do you want to publish a course? Click here

Symmetries for scalarless scalar theories

99   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We consider theories containing scalar fields interacting with vector or with tensor degrees of freedom, equipped with symmetries that prevent the propagation of linearized scalar excitations around solutions of the equations of motion. We first study the implications of such symmetries for building vector theories that break Abelian gauge invariance without necessarily exciting longitudinal scalar fluctuations in flat space. We then examine scalar-tensor theories in curved space, and relate the symmetries we consider with a non-linear realization of broken space-time symmetries acting on scalar modes. We determine sufficient conditions on the space-time geometry to avoid the propagation of scalar fluctuations. We analyze linearized perturbations around spherically symmetric black holes, proving the absence of scalar excitations, and pointing out modifications in the dynamics of spin-2 fluctuations with respect to Einstein gravity. We then study consequences of this set-up for the dark energy problem, determining scalar constraints on cosmological configurations that can lead to self-accelerating universes whose expansion is insensitive to the value of the bare cosmological constant.



rate research

Read More

We reconsider the issue of whether scalar-tensor theories can admit stable wormhole configurations supported by a non-trivial radial profile for the scalar field. Using a recently proposed effective theory for perturbations around static, spherically symmetric backgrounds, we show that scalar-tensor theories of beyond Horndeski type can have wormhole solutions that are free of ghost and gradient instabilities. Such solutions are instead forbidden within the more restrictive Horndeski class of theories.
A new systematic approach extending the notion of frames to the Palatini scalar-tensor theories of gravity in various dimensions n>2 is proposed. We impose frame transformation induced by the group action which includes almost-geodesic and conformal transformations. We characterize theories invariant with respect to these transformations dividing them up into solution-equivalent subclasses (group orbits). To this end, invariant characteristics have been introduced. Unlike in the metric case, it turns out that the dimension four admitting the largest transformation group is rather special for such theories. The formalism provides new frames that incorporate non-metricity. The case of Palatini F(R)-gravity is considered in more detail.
The Pauli--Villars regularization procedure confirms and sharpens the conclusions reached previously by covariant point splitting. The divergences in the stress tensor of a quantized scalar field interacting with a static scalar potential are isolated into a three-parameter local, covariant functional of the background potential. These divergences can be naturally absorbed into coupling constants of the potential, regarded as a dynamical object in its own right; here this is demonstrated in detail for two different models of the field-potential coupling. here is a residual dependence on the logarithm of the potential, reminiscent of the renormalization group in fully interacting quantum field theories; these terms are finite but numerically dependent on an arbitrary mass or length parameter, which is purely a matter of convention. This work is one step in a program to elucidate boundary divergences by replacing a sharp boundary by a steeply rising smooth potential.
Employing the method of Wigner functions on curved spaces, we study classical kinetic (Boltzmann-like) equations of distribution functions for a real scalar field with the Lifshitz scaling. In particular, we derive the kinetic equation for $z=2$ on general curved spaces and for $z=3$ on spatially flat spaces under the projectability condition $N=N(t)$, where $z$ is the dynamical critical exponent and $N$ is the lapse function. We then conjecture a form of the kinetic equation for a real scalar field with a general dispersion relation in general curved geometries satisfying the projectability condition, in which all the information about the non-trivial dispersion relation is included in the group velocity and which correctly reproduces the equations for the $z=2$ and $z=3$ cases as well as the relativistic case. The method and equations developed in the present paper are expected to be useful for developments of cosmology in the context of Hov{r}ava-Lifshitz gravity.
We develop the general theory of Noether symmetries for constrained systems. In our derivation, the Dirac bracket structure with respect to the primary constraints appears naturally and plays an important role in the characterization of the conserved quantities associated to these Noether symmetries. The issue of projectability of these symmetries from tangent space to phase space is fully analyzed, and we give a geometrical interpretation of the projectability conditions in terms of a relation between the Noether conserved quantity in tangent space and the presymplectic form defined on it. We also examine the enlarged formalism that results from taking the Lagrange multipliers as new dynamical variables; we find the equation that characterizes the Noether symmetries in this formalism. The algebra of generators for Noether symmetries is discussed in both the Hamiltonian and Lagrangian formalisms. We find that a frequent source for the appearance of open algebras is the fact that the transformations of momenta in phase space and tangent space only coincide on shell. Our results apply with no distinction to rigid and gauge symmetries; for the latter case we give a general proof of existence of Noether gauge symmetries for theories with first and second class constraints that do not exhibit tertiary constraints in the stabilization algorithm. Among some examples that illustrate our results, we study the Noether gauge symmetries of the Abelian Chern-Simons theory in $2n+1$ dimensions. An interesting feature of this example is that its primary constraints can only be identified after the determination of the secondary constraint. The example is worked out retaining all the original set of variables.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا