No Arabic abstract
A new systematic approach extending the notion of frames to the Palatini scalar-tensor theories of gravity in various dimensions n>2 is proposed. We impose frame transformation induced by the group action which includes almost-geodesic and conformal transformations. We characterize theories invariant with respect to these transformations dividing them up into solution-equivalent subclasses (group orbits). To this end, invariant characteristics have been introduced. Unlike in the metric case, it turns out that the dimension four admitting the largest transformation group is rather special for such theories. The formalism provides new frames that incorporate non-metricity. The case of Palatini F(R)-gravity is considered in more detail.
We reconsider the issue of whether scalar-tensor theories can admit stable wormhole configurations supported by a non-trivial radial profile for the scalar field. Using a recently proposed effective theory for perturbations around static, spherically symmetric backgrounds, we show that scalar-tensor theories of beyond Horndeski type can have wormhole solutions that are free of ghost and gradient instabilities. Such solutions are instead forbidden within the more restrictive Horndeski class of theories.
A class of scalar-tensor theories (STT) including a non-metricity that unifies metric, Palatini and hybrid metric-Palatini gravitational actions with non-minimal interaction is proposed and investigated from the point of view of their consistency with generalized conformal transformations. It is shown that every such theory can be represented on-shell by a purely metric STT possessing the same solutions for a metric and a scalar field. A set of generalized invariants is also proposed. This extends the formalism previously introduced in cite{kozak2019}. We then apply the formalism to Starobinsky model, write down the Friedmann equations for three possible cases: metric, Palatini and hybrid metric-Palatini, and compare some inflationary observables.
We present measurements of the spatial clustering statistics in redshift space of various scalar field modified gravity simulations. We utilise the two-point and the three-point correlation functions to quantify the spatial distribution of dark matter halos within these simulations and thus discern between the models. We compare $Lambda$CDM simulations to various modified gravity scenarios and find consistency with previous work in terms of 2-point statistics in real and redshift-space. However using higher order statistics such as the three-point correlation function in redshift space we find significant deviations from $Lambda$CDM hinting that higher order statistics may prove to be a useful tool in the hunt for deviations from General Relativity.
In this paper we generalize the off-shell Abbott-Deser-Tekin (ADT) conserved charge formalism to Palatini theory of gravity with torsion and non-metricity. Our construction is based on the coordinate formalism and the independent dynamic fields are the metric and the affine connection. For a general Palatini theory of gravity, which is diffeomorphism invariant up to a boundary term, we obtain the most general expression for off-shell ADT potential. As explicit examples, we derive the off-shell ADT potentials for Einstein-Hilbert action, the most general $L(g_{mu u}, R^{lambda}{}_{ ualphamu}, T^{lambda}{}_{alphabeta}, Q_{alphamu u})$ theories and the teleparallel Palatini gravity.
We investigate f(R) theories of gravity within the Palatini approach and show how one can determine the expansion history, H(a), for an arbitrary choice of f(R). As an example, we consider cosmological constraints on such theories arising from the supernova type Ia, large scale structure formation and cosmic microwave background observations. We find that best fit to the data is a non-null leading order correction to the Einstein gravity, but the current data exhibits no significant preference over the concordance LCDM model. Our results show that the often considered 1/R models are not compatible with the data. The results demonstrate that the background expansion alone can act as a good discriminator between modified gravity models when multiple data sets are used.