Do you want to publish a course? Click here

The stellar halos of ETGs in the IllustrisTNG simulations: II. Accretion, merger history, and dark halo connection

120   0   0.0 ( 0 )
 Added by Claudia Pulsoni
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Stellar halos in early-type galaxies (ETGs) are shaped by their accretion and merger histories. We use a sample of 1114 ETGs in the TNG100 simulation with stellar masses $10^{10.3}leq M_{*}/M_odotleq 10^{12}$, selected at z=0 within the range of g-r colour and lambda-ellipticity diagram populated by observed ETGs. We study how the rotational support and intrinsic shapes of the stellar halos depend on the fraction of accreted stars, overall and separately by major, minor, and mini mergers. Accretion histories in TNG100 ETGs as well as the radial distributions of ex-situ stars $f_{ex}(R)$ strongly correlate with stellar mass. Low-mass ETGs have characteristic peaked rotation profiles and near-oblate shapes with rounder halos that are completely driven by the in-situ stars. At high $f_{ex}$ major mergers decrease the in-situ peak in rotation velocity, flatten the $V_{*}/sigma_{*}(R)$ profiles, and increase the triaxiality of the stellar halos. Kinematic transition radii do not trace the transition between in-situ and ex-situ dominated regions, but for systems with $M_{*}>10^{10.6}M_odot$ the local rotational support decreases with the local ex-situ fraction $f_{ex}(R)$ and triaxiality increases with $f_{ex}$. These correlations are followed by fast and slow rotators alike with a continuous and overlapping sequence of properties. Merger events dynamically couple stars and dark matter: in high mass ETGs and at large radii where $f_{ex}gtrsim0.5$, both components tend to have similar intrinsic shapes and rotational support, and nearly aligned principal axes and spin directions. Based on these results we suggest that extended photometry and kinematics of massive ETGs ($M_{*}>10^{10.6}M_odot$) can be used to estimate the local fraction of ex-situ stars and to approximate the intrinsic shapes and rotational support of the co-spatial dark matter component. [abridged]



rate research

Read More

We characterize the photometric and kinematic properties of simulated early-type galaxy (ETG) stellar halos, and compare them to observations. We select a sample of ~1200 ETGs in the TNG100 and TNG50 simulations, spanning a stellar mass range of $10^{10.3}-10^{12}M_{odot}$ and within the range of (g-r) colour and lambda-ellipticity diagram populated by observed ETGs. We determine photometric parameters, intrinsic shapes, and kinematic observables in their extended stellar halos. We study the variation in kinematics from center to halo and connect it to a change in the intrinsic shape of the galaxies. We find that the simulated galaxy sample reproduces the diversity of kinematic properties observed in ETG halos. Simulated fast rotators (FRs) divide almost evenly in one third having flat lambda profiles and high halo rotational support, a third with gently decreasing profiles, and another third with low halo rotation. Slow rotators (SRs) tend to have increased rotation in the outskirts, with half of them exceeding lambda=0.2. For $M_{*}>10^{11.5}M_{odot}$ halo rotation is unimportant. A similar variety of properties is found for the stellar halo intrinsic shapes. Rotational support and shape are deeply related: the kinematic transition to lower rotational support is accompanied by a change towards rounder intrinsic shape. Triaxiality in the halos of FRs increases outwards and with stellar mass. Simulated SRs have relatively constant triaxiality profiles. Simulated stellar halos show a large variety of structural properties, with quantitative but no clear qualitative differences between FRs and SRs. At the same stellar mass, stellar halo properties show a gradual transition and significant overlap between the two families, despite the clear bimodality in the central regions. This is in agreement with observations of extended photometry and kinematics. [abridged]
We use the EAGLE suite of hydrodynamical simulations to analyse accretion rates (and the breakdown of their constituent channels) onto haloes over cosmic time, comparing the behaviour of baryons and dark matter (DM). We also investigate the influence of sub-grid baryon physics on halo-scale inflow, specifically the consequences of modelling radiative cooling, as well as feedback from stars and active galactic nuclei (AGN). We find that variations in halo baryon fractions at fixed mass (particularly their circum-galactic medium gas content) are very well correlated with variations in the baryon fraction of accreting matter, which we show to be heavily suppressed by stellar feedback in low-mass haloes, $M_{rm halo}lesssim10^{11.5}M_{odot}$. Breaking down accretion rates into first infall, recycled, transfer and merger components, we show that baryons are much more likely to be smoothly accreted than to have originated from mergers when compared to DM, finding (averaged across halo mass) a merger contribution of $approx6%$ for baryons, and $approx15%$ for DM at $zapprox0$. We also show that the breakdown of inflow into different channels is strongly dependent on sub-grid physics, particularly the contribution of recycled accretion (accreting matter that has been previously ejected from progenitor haloes). Our findings highlight the dual role that baryonic feedback plays in regulating the evolution of galaxies and haloes: by (i) directly removing gas from haloes, and (ii) suppressing gas inflow to haloes.
406 - Ying Zu , Rachel Mandelbaum 2015
We develop a simple yet comprehensive method to distinguish the underlying drivers of galaxy quenching, using the clustering and galaxy-galaxy lensing of red and blue galaxies in SDSS. Building on the iHOD framework developed by Zu & Mandelbaum (2015a), we consider two quenching scenarios: 1) a halo quenching model in which halo mass is the sole driver for turning off star formation in both centrals and satellites; and 2) a hybrid quenching model in which the quenched fraction of galaxies depends on their stellar mass while the satellite quenching has an extra dependence on halo mass. The two best-fit models describe the red galaxy clustering and lensing equally well, but halo quenching provides significantly better fits to the blue galaxies above $10^{11} M_odot/h^2$. The halo quenching model also correctly predicts the average halo mass of the red and blue centrals, showing excellent agreement with the direct weak lensing measurements of locally brightest galaxies. Models in which quenching is not tied to halo mass, including an age-matching model in which galaxy colour depends on halo age at fixed $M_*$, fail to reproduce the observed halo mass for massive blue centrals. We find similar critical halo masses responsible for the quenching of centrals and satellites (~$1.5times10^{12} Modot/h^2$), hinting at a uniform quenching mechanism for both, e.g., the virial shock-heating of infalling gas. The success of the iHOD halo quenching model provides strong evidence that the physical mechanism that quenches star formation in galaxies is tied principally to the masses of their dark matter halos rather than the properties of their stellar components.
We study the Intra-Halo Stellar Component (IHSC) of Milky Way-mass systems up to galaxy clusters in the Horizon-AGN cosmological hydrodynamical simulation. We identify the IHSC using an improved phase-space galaxy finder algorithm which provides an adaptive, physically motivated and shape-independent definition of this stellar component, that can be applied to halos of arbitrary masses. We explore the IHSC mass fraction-total halos stellar mass, $f_{M*,IHSC}-M*$, relation and the physical drivers of its scatter. We find that on average the $f_{M*,IHSC}$ increases with $M_{*,tot}$, with the scatter decreasing strongly with mass from 2 dex at $M_{*,tot}sim10^{11}M_odot$ to 0.3 dex at group masses. At high masses, $M_{*,tot}>10^{11.5}M_odot$, $f_{M*,IHSC}$ increases with the number of substructures, and with the mass ratio between the central galaxy and largest satellite, at fixed $M_{*,tot}$. From mid-size groups and systems below $M_{*,tot}<10^{12}M_odot$, we find that the central galaxys stellar rotation-to-dispersion velocity ratio, V/{sigma}, displays the strongest (anti)-correlation with $f_{M*,IHSC}$ at fixed $M_{*,tot}$ of all the galaxy and halo properties explored, transitioning from $f_{M*,IHSC}$<0.1% for high V/{sigma}, to $f_{M*,IHSC}sim5$% for low V/{sigma} galaxies. By studying the $f_{M*,IHSC}$ temporal evolution, we find that, in the former, mergers not always take place, but if they did, they happened early (z>1), while the high $f_{M*,IHSC}$ population displays a much more active merger history. In the case of massive groups and galaxy clusters, $M_{*,tot}>10^{12}M_odot$, a fraction $f_{M*,IHSC}sim$10-20% is reached at $zsim1$ and then they evolve across lines of constant $f_{M*,IHSC}$ modulo some small perturbations. Because of the limited simulations volume, the latter is only tentative and requires a larger sample of simulated galaxy clusters to confirm.
Fully cosmological, high resolution N-Body + SPH simulations are used to investigate the chemical abundance trends of stars in simulated stellar halos as a function of their origin. These simulations employ a physically motivated supernova feedback recipe, as well as metal enrichment, metal cooling and metal diffusion. As presented in an earlier paper, the simulated galaxies in this study are surrounded by stellar halos whose inner regions contain both stars accreted from satellite galaxies and stars formed in situ in the central regions of the main galaxies and later displaced by mergers into their inner halos. The abundance patterns ([Fe/H] and [O/Fe]) of halo stars located within 10 kpc of a solar-like observer are analyzed. We find that for galaxies which have not experienced a recent major merger, in situ stars at the high [Fe/H] end of the metallicity distribution function are more [alpha/Fe]-rich than accreted stars at similar [Fe/H]. This dichotomy in the [O/Fe] of halo stars at a given [Fe/H] results from the different potential wells within which in situ and accreted halo stars form. These results qualitatively match recent observations of local Milky Way halo stars. It may thus be possible for observers to uncover the relative contribution of different physical processes to the formation of stellar halos by observing such trends in the halo populations of the Milky Way, and other local L* galaxies.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا