Do you want to publish a course? Click here

Physarum Multi-Commodity Flow Dynamics

73   0   0.0 ( 0 )
 Added by Kurt Mehlhorn
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

In wet-lab experiments, the slime mold Physarum polycephalum has demonstrated its ability to solve shortest path problems and to design efficient networks. For the shortest path problem, a mathematical model for the evolution of the slime is available and it has been shown in computer experiments and through mathematical analysis that the dynamics solves the shortest path problem. In this paper, we introduce a dynamics for the network design problem. We formulate network design as the problem of constructing a network that efficiently supports a multi-commodity flow problem. We investigate the dynamics in computer simulations and analytically. The simulations show that the dynamics is able to construct efficient and elegant networks. In the theoretical part we show that the dynamics minimizes an objective combining the cost of the network and the cost of routing the demands through the network. We also give alternative characterization of the optimum solution.



rate research

Read More

Motivated by scheduling in Geo-distributed data analysis, we propose a target location problem for multi-commodity flow (LoMuF for short). Given commodities to be sent from their resources, LoMuF aims at locating their targets so that the multi-commodity flow is optimized in some sense. LoMuF is a combination of two fundamental problems, namely, the facility location problem and the network flow problem. We study the hardness and algorithmic issues of the problem in various settings. The findings lie in three aspects. First, a series of NP-hardness and APX-hardness results are obtained, uncovering the inherent difficulty in solving this problem. Second, we propose an approximation algorithm for general undirected networks and an exact algorithm for undirected trees, which naturally induce efficient approximation algorithms on directed networks. Third, we observe separations between directed networks and undirected ones, indicating that imposing direction on edges makes the problem strictly harder. These results show the richness of the problem and pave the way to further studies.
Modern networks run middleboxes that offer services ranging from network address translation and server load balancing to firewalls, encryption, and compression. In an industry trend known as Network Functions Virtualization (NFV), these middleboxes run as virtual machines on any commodity server, and the switches steer traffic through the relevant chain of services. Network administrators must decide how many middleboxes to run, where to place them, and how to direct traffic through them, based on the traffic load and the server and network capacity. Rather than placing specific kinds of middleboxes on each processing node, we argue that server virtualization allows each server node to host all middlebox functions, and simply vary the fraction of resources devoted to each one. This extra flexibility fundamentally changes the optimization problem the network administrators must solve to a new kind of multi-commodity flow problem, where the traffic flows consume bandwidth on the links as well as processing resources on the nodes. We show that allocating resources to maximize the processed flow can be optimized exactly via a linear programming formulation, and to arbitrary accuracy via an efficient combinatorial algorithm. Our experiments with real traffic and topologies show that a joint optimization of node and link resources leads to an efficient use of bandwidth and processing capacity. We also study a class of design problems that decide where to provide node capacity to best process and route a given set of demands, and demonstrate both approximation algorithms and hardness results for these problems.
Physarum Polycephalum is a slime mold that is apparently able to solve shortest path problems. A mathematical model has been proposed by biologists to describe the feedback mechanism used by the slime mold to adapt its tubular channels while foraging two food sources s0 and s1. We prove that, under this model, the mass of the mold will eventually converge to the shortest s0 - s1 path of the network that the mold lies on, independently of the structure of the network or of the initial mass distribution. This matches the experimental observations by the biologists and can be seen as an example of a natural algorithm, that is, an algorithm developed by evolution over millions of years.
Column generation is often used to solve multi-commodity flow problems. A program for column generation always includes a module that solves a linear equation. In this paper, we address three major issues in solving linear problem during column generation procedure which are (1) how to employ the sparse property of the coefficient matrix; (2) how to reduce the size of the coefficient matrix; and (3) how to reuse the solution to a similar equation. To this end, we first analyze the sparse property of coefficient matrix of linear equations and find that the matrices occurring in iteration are very sparse. Then, we present an algorithm locSolver (for localized system solver) for linear equations with sparse coefficient matrices and right-hand-sides. This algorithm can reduce the number of variables. After that, we present the algorithm incSolver (for incremental system solver) which utilizes similarity in the iterations of the program for a linear equation system. All three techniques can be used in column generation of multi-commodity problems. Preliminary numerical experiments show that the incSolver is significantly faster than the existing algorithms. For example, random test cases show that incSolver is at least 37 times and up to 341 times faster than popular solver LAPACK.
132 - Pengfei Liu 2021
This paper gives a localized method for the multi-commodity flow problem. We relax both the capacity constraints and flow conservation constraints, and introduce a congestion function $psi$ for each arc and $height$ function $h$ for each vertex and commodity. If the flow exceeds the capacity on arc $a$, arc $a$ would have a congestion cost. If the flow into the vertex $i$ is not equal to that out of the vertex for commodity $k$, vertex $i$ would have a height, which is positively related to the difference between the amount of the commodity $k$ into the vertex $i$ and that out of the vertex. Based on the height function $h$ and the congestion function $psi$, a new conception, stable pseudo-flow, is introduced, which satisfies the following conditions: ($mathrm{i}$) for any used arc of commodity $k$, the height difference between vertex $i$ and vertex $j$ is equal to the congestion of arc $(i,j)$; ($mathrm{ii}$) for any unused arc of commodity $k$, the height difference between vertex $i$ and vertex $j$ is less than or equal to the congestion of arc $(i,j)$. If the stable pseudo-flow is a nonzero-stable pseudo-flow, there exists no feasible solution for the multi-commodity flow problem; if the stable pseudo-flow is a zero-stable pseudo-flow, there exists feasible solution for the multi-commodity flow problem and the zero-stable pseudo-flow is the feasible solution. Besides, a non-linear description of the multi-commodity flow problem is given, whose solution is stable pseudo-flow. And the non-linear description could be rewritten as convex quadratic programming with box constraints. Rather than examine the entire network to find path, the conclusion in this paper shows that the multi-commodity flow problem could be solved in a localized manner by looking only at the vertex and its neighbors.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا